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Abstract
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held by market leaders also yield revenue premiums beyond what can be explained by
their own product introductions and are associated with stronger deterrence of com-
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for protection rather than market innovation—which dampens innovation and slows
creative destruction.
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1 Introduction

Product innovation is a key engine of long-run growth (Romer, 1990; Grossman and Help-

man, 1991). By expanding varieties and improving quality, new products raise productivity,

enhance consumer welfare, and spur creative destruction. Because of this central role,

economists and policymakers have long focused on the incentives that shape innovation.

Patents are the main institutional tool: by granting temporary monopoly rights, they are

meant to encourage research and commercialization. Yet we know little about how often

patents actually translate into product innovations, due to limited data on both market

innovations and their link to patents. This measurement gap is critical, since patents may

also serve a defensive purpose—used strategically to block rivals and extend incumbency

rather than to advance innovation.1 Understanding whether firms grow through product in-

novation or through strategic use of patents is especially important in light of recent trends:

patenting has surged even as productivity growth and business dynamism have slowed,2

raising concerns that the patent system may increasingly serve to sustain market power

rather than foster innovation.

In this paper, we address this gap by developing the first large-scale dataset that links

patents to product innovations in the U.S. consumer goods sector. We combine NielsenIQ

scanner data with USPTO patent records and apply natural language processing techniques

to match detailed product descriptions with patent texts. We show that while more than

half of product innovations in the sector originate from firms that do not patent, patent

filings are, on average, associated with subsequent product introductions. Importantly, this

association between product introduction and patenting weakens with firm size. Moreover,

relative to smaller firms, patents held by large firms generate larger revenue premiums be-

yond what can be explained by their own product introductions and are associated with

stronger deterrence of competitors’ future product introductions. To interpret these find-

ings, we develop a stylized Schumpeterian model in which the returns to product innova-

tion decline with firm size while the protective value of patenting increases. Calibrated to

our data, the model’s counterfactuals imply that a sizable share of large-firm patents are

strategic—filed for protective purposes without corresponding market innovations—thereby

reducing innovation and reallocation in the consumer goods sector.

Our first contribution is to construct a novel dataset that links patents to product intro-

1See the classic study by Gilbert and Newbery (1982), along with more recent contributions by Cohen,
Nelson and Walsh (2000); Jaffe and Lerner (2004); Bessen and Meurer (2008); Boldrin and Levine (2013).
Some of the popular press articles are: “The Experts: Does the Patent System Encourage Innovation?”
(WSJ, 2013) and “Save America’s Patent System” (NYT, 2022).

2Decker, Haltiwanger, Jarmin and Miranda (2016); Crouzet and Eberly (2019); Bloom, Jones,
Van Reenen and Webb (2020); Akcigit and Ates (2023).
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ductions at scale. This requires overcoming two main empirical challenges: (i) measuring

product innovation in the market and (ii) linking innovations to the patents that underlie

them. We address these challenges by combining comprehensive retail scanner data with

information on U.S. patents, enriched by modern text-analysis techniques.

The starting point is rich product information from NielsenIQ scanner data covering the

consumer goods sector from 2006 to 2015, which accounts for roughly 12.5-14% of total

goods consumption. These data provide detailed product attributes (e.g., formula, style,

content) and record sales and prices information. We use this richness to construct mea-

sures of product innovation. Our simplest measure is the count of new products (barcodes)

introduced by a firm in a given product category-year. To better capture substantive inno-

vations, we also build a quality-adjusted measure that incorporates both the new attributes

a product brings to the market and the market response in terms of prices and sales. By

drawing on scanner data that cover thousands of consumer goods products (e.g., lamps, bat-

teries, over-the-counter pharmaceuticals, laundry detergents, yogurts) with near-universal

coverage, we obtain a comprehensive view of product innovations in the sector, the firms

that introduce them, and their market positions.

The second challenge is to match products to firms’ patents. We begin at the firm level,

linking company names across the NielsenIQ and USPTO data to track overall patenting

and product introductions jointly over time. We then develop a more granular match

at the patent and product level. First, we define product categories as sets of similar

products. We then use detailed product descriptions from NielsenIQ, enriched with text

from Wikipedia articles, together with firms’ patent texts, and apply natural language

processing methods to assign patents to product categories based on text similarity.3 This

approach yields our benchmark patent-to-products dataset at the firm×category×year level,

enabling us to observe whether specific firm patents translate into commercial products. We

link over 190,000 patent applications (and up to 400,000 when including those filed prior to

Nielsen coverage window) to active product categories of NielsenIQ firms. For example, our

matching procedure links Procter & Gamble’s 2011 patent on water-soluble film, which led

to Tide Pods, to laundry detergents, and Beyond Meat’s 2014 patent on plant-based meat

to subsequent simulated beef product introductions.

We conduct extensive validation and robustness checks to ensure that our matching

procedure accurately links patents to products and filters out unrelated patents, such as

those outside the consumer goods sector or cost-reducing process patents. The algorithm

3See Manning, Raghavan and Schütze (2008). Similar techniques are used by Younge and Kuhn (2016),
Webb (2019), Kelly, Papanikolaou, Seru and Taddy (2021), and Kalyani, Bloom, Carvalho, Hassan, Lerner
and Tahoun (2025).
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is robust to perturbations, and we validate its performance through external benchmarks,

placebo tests, and checks on filtered patents. Because our data focus exclusively on product

innovations, we ensure that the algorithm explicitly excludes general process and method

patents, which are unlikely to be directly associated with product introductions, and we

conduct multiple validation exercises using external measures (Bena and Simintzi, 2017;

Tham, Baslandze, Sojli and Liu, 2025). This approach guarantees that our analysis consis-

tently centers on product innovations and the patents most plausibly related to them. While

cost-reducing process innovations are an important component of firms’ broader innovative

activities, our study deliberately focuses on product innovation and patenting to maintain

a consistent scope.

The resulting dataset tracks product patents and products commercialized for firms in

the consumer goods sector. Although our analysis is confined to this sector, patenting

intensities and product introduction rates are broadly comparable to those in other manu-

facturing industries: of 35,000 firms in our data, 15% applied for a patent at least once (9%

during the NielsenIQ sample period), a rate in line with manufacturing and at least three

times higher than that of the U.S. economy (Graham, Grim, Islam, Marco and Miranda,

2018; Mezzanotti and Simcoe, 2025). Consumer products are also among the most active in

patent litigation (PwC, 2018), underscoring the importance of patents as competitive tools.

The sector spans a wide range of categories with distinct patenting intensities, enabling us

to document heterogeneous patterns across product types.

We begin our analysis by using our patents-to-product dataset to reevaluate the associ-

ation between patents and product innovation. Patents have long been employed as proxies

for innovation because they are observable, frequent, and correlated with firm performance,

including stock market value, growth, and productivity (Hall, Thoma and Torrisi, 2007;

Balasubramanian and Sivadasan, 2011; Kogan, Papanikolaou, Seru and Stoffman, 2017).

Leveraging our novel match between patents and product introductions, we directly test

how patenting relates to market innovation. First, we find that firms without patents ac-

count for the majority of product innovation in the sector: they introduce more than half

of all new products, 65% of quality-adjusted innovations, and account for 58% of sectoral

sales growth. Next, exploiting variation within firm × product category over time, we es-

timate how new patent filing rates translate into subsequent product introduction rates,

controlling for category–time and firm–category fixed effects. We find that a 10% increase

in the patenting rate is associated with a 0.4% increase in the product introduction rate

in the following year, with the strongest effects at one- to two-year lags, and that these ef-

fects are persistent. The relationship is stronger for granted and citation-adjusted patents,

consistent with higher-quality patents being more closely tied to innovation. The positive
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association holds in both food and non-food product categories, with particularly strong

effects in health and beauty, non-food grocery, and general merchandise.

Next, leveraging our joint data on product introductions and patents, we examine how

the relationship between patents and product introduction varies with firm size. We show

that smaller firms within a product category introduce new products at much higher rates,

whereas market leaders introduce products at lower rates and file substantially more patents

per new product. This higher patent intensity is not explained by a shift toward fewer but

more radical innovations, as quality-adjusted product introduction rates also decline with

firm size.4 Regression estimates confirm that the positive association between patenting

and subsequent product introductions is strong for small firms but weakens sharply for

large firms: the patents-to-product introduction coefficient is 0.15 for the lowest quintile of

firms, but more than six times smaller for those in the top quintile, indicating that leaders’

patents are relatively less likely to yield actual product commercialization. Extensive ro-

bustness checks demonstrate that this pattern is not driven by delayed commercialization,

misclassified process-related patents, data coverage issues, international product launches,

or size-dependent measurement error in our text-matching algorithm.

The robust pattern of a weaker association between patents and actual innovations

among larger firms is consistent with stronger incentives to file strategic patents not pri-

marily intended to support the commercialization of new products, but rather to defend

market position and deter competition.5 Larger firms may also face lower marginal costs

of patenting and enforcement due to scale economies in R&D, legal teams, and litigation

resources (Rempel, 2021). Regardless of the underlying mechanism, our findings indicate

that patents held by larger firms are less likely to translate into product innovations. Ad-

ditional evidence shows that patents by market leaders are less scientifically novel, receive

fewer forward citations—particularly from competitors—and are more likely to be litigated.

This pattern is consistent with the weaker conversion of patents into market innovations

among large firms reflecting an increasing focus on strategic patenting.

Lastly, in our empirical analysis, we turn to the role of patents in firm growth. In Schum-

peterian models, firms expand either by innovating or by defending their market position

against competitors—strategies with very different implications for aggregate growth: inno-

vation raises productivity, whereas strategic patenting primarily reallocates market shares.

Using data on revenues, product introductions, and patent filings, we estimate the revenue

4Mezzanotti and Simcoe (2025) provides evidence that large firms systematically use patents more ex-
tensively, even after adjusting for product market, and for both the quantity and quality of R&D.

5Strategic patenting practices often discussed in the literature include “sleeping patents” (Torrisi, Gam-
bardella, Giuri, Harhoff, Hoisl and Mariani, 2016), “patent thickets” (Shapiro, 2000; Hall, Graevenitz and
Helmers, 2021), “patent evergreening” (Righi and Simcoe, 2020), and “defensive patenting”.
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premium from patents with and without accompanying product innovations. Patents are

associated with higher revenues—a 10% increase in patent stock raises sales by 1.5% in

the following year—but the elasticity of sales with respect to new product introductions

is substantially larger, underscoring their central role in firm growth (Hottman, Redding

and Weinstein, 2016; Argente, Lee and Moreira, 2024). For large firms, however, a sizable

residual patent premium remains even after conditioning on product launches. We further

show that intensified patenting by market leaders is followed by fewer product introductions

from competitors, whereas smaller firms’ patents have no such effect. Overall, these results

suggest that patents contribute to firm growth through both productive and strategic chan-

nels: while innovation broadly drives growth, patenting plays a disproportionate role for

large incumbents by deterring rivals and sustaining revenues.

To interpret these patterns, we conclude the paper with an illustrative growth model

that separates firms’ incentives to innovate from their incentives to patent. The model

rationalizes our empirical findings of a positive association between patents and product

innovation by showing how these incentives diverge with firm size: as firms expand, the

returns to product introduction decline due to rent cannibalization, whereas the benefits

of patenting rise because larger incumbents have more to protect. This generates strong

incentives for strategic patents—patents filed for protective purposes without corresponding

market innovations—which allow incumbents to defend their market position but weaken

creative destruction. Calibrated to our empirical moments, the counterfactuals suggest that

a sizable share of patents filed by large firms are strategic, reducing creative destruction by

about 3% in product categories dominated by large incumbents. Eliminating the option to

patent without commercialization increases innovation incentives for large incumbents, who

must now innovate to protect their market positions, and raises reallocation, underscoring

the cost of strategic patenting for growth. Extensions show that these results are robust to

size-dependent patenting costs, which further reinforce large firms’ reliance on patents for

strategic purposes. While deliberately stylized, our model highlights the broader mecha-

nisms through which strategic patenting can sustain incumbents’ market power, dampening

both innovation and reallocation in the consumer goods sector.

Related Literature – Our novel data set sheds light on the usefulness of patent statistics

for measuring innovation. A large literature has relied on indirect proxies for innovation

in the absence of direct measures. Some studies infer innovation from employment or sales

growth (Garcia-Macia, Hsieh and Klenow, 2019), while others value innovation directly

from patents (e.g., Akcigit and Kerr, 2018) or combined with stock market data (Kogan,

Papanikolaou, Seru and Stoffman, 2017). Alternative approaches consider innovations oc-

5



curring outside the patent system, such as new technical books (Alexopoulos, 2011) or

innovations exhibited at World Fairs (Moser, 2012).6 Our contribution is to link patents

to specific product introductions at the firm level—an often unobservable relationship—

allowing us to directly evaluate how well patent metrics capture true market innovations.7

In doing so, we show that the informativeness of patent metrics depends critically on firm

size and market position.

A second related strand highlights how patents affect follow-on innovation. Studies in

this area include Williams (2013) and Sampat and Williams (2019) for human genes; Cock-

burn and J. MacGarvie (2011) for software products; and Lampe and Moser (2015) for

follow-on patenting with patent pools. While these papers have not considered heteroge-

neous effects by firm size, Galasso and Schankerman (2015) examined 1,357 Federal Circuit

patents and showed that invalidating patent rights of large patentees led to more follow-on

citations to the focal patents by small patentees. In our data, we observe direct measures of

product innovation in the market for all firms in the consumer goods sector and show that

patenting by market leaders is related to lower product commercialization by competitors.

To the best of our knowledge, this paper is the first to study the relationship between patent

filings and product innovations over the full firm size distribution using direct information

on the commercialization of products.

Our findings contribute to our understanding of firm growth strategies and connect to

recent macroeconomic trends. While patenting has surged, productivity growth and busi-

ness dynamism have slowed (Decker, Haltiwanger, Jarmin and Miranda, 2016; Gordon,

2016; Bloom, Jones, Van Reenen and Webb, 2020; Akcigit and Ates, 2021). Large firms

increasingly invest in intangibles, including intellectual property, yet this often coincides

with rising concentration rather than faster aggregate innovation (Gutiérrez and Philip-

pon, 2017; Crouzet and Eberly, 2019; De Loecker, Eeckhout and Unger, 2020; Autor, Dorn,

Katz, Patterson and Van Reenen, 2020). Recent work highlights a range of strategic be-

haviors by large incumbents that contribute to weaker competition and slower productivity

growth: defensive inventor hiring (Akcigit and Goldschlag, 2023; Fernández-Villaverde, Yu

and Zanetti, 2025), political influence (Akcigit, Baslandze and Lotti, 2023; Gutiérrez and

Philippon, 2019), acquisitions of potential rivals (Cunningham et al., 2021), and slower

knowledge diffusion from leaders to laggards (Akcigit and Ates, 2023).8 Our analysis pro-

vides direct empirical support for this view, showing that patenting may serve as an addi-

tional protective tool: as firms grow, they substitute away from product innovation toward

6See a comprehensive survey of the innovation literature by Bryan and Williams (2021).
7Recent work by Pearce and Wu (2024) follows a similar approach to ours, linking NielsenIQ data to

USPTO Trademarks.
8See Baslandze (2021) for a review.
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strategic patenting, limiting reallocation and dampening aggregate innovation.

The rest of the paper is organized as follows. Section 2 describes the data, matching

algorithms, and validation checks. Section 3 presents the main empirical results on patents

and product innovation. Section 3.2 examines the relationship between patents, innovation,

and firm growth. Section 5 introduces a simple model with a quantitative illustration.

Section 6 concludes.

2 Data, Matching Algorithms, and Measurement

We face two main challenges in studying the relationship between patents and product

innovation. First, while patent data are widely available, large-scale information on new

product introductions is rare. Second, linking patents to related products is difficult. This

section outlines our empirical strategies to address these challenges.

We build a dataset on product introductions using NielsenIQ scanner data covering

consumer goods firms from 2006 to 2015. Products are identified by barcodes, with detailed

characteristics that allow us to construct measures of product innovation. Patent data come

from the United States Patent and Trademark Office (USPTO). Together, these sources

provide sector-wide coverage of both patents and product innovations.

To link patents to products, we begin by using firm names in the patent and product

data sets to map firms’ patent portfolios to their products. This mapping is too coarse to

connect patents with specific products and does not filter out unrelated patents, such as

those tied to products outside the consumer goods sector or to general, cost-reducing process

improvements. We therefore draw on the rich information contained in patent records and

product descriptions from NielsenIQ and Wikipedia, applying natural language processing

methods to systematically link sets of patents to related products within firms.

Because a patent may generate multiple products (or none) and a product may draw on

multiple patents (or none), one-to-one matching is neither feasible nor desirable. Instead, we

group similar products into categories and assign patents based on textual similarity between

patent texts and product descriptions within those categories. This yields our benchmark

patents-to-products dataset. Figure 1 illustrates the construction, with algorithmic details

provided below.

To our knowledge, this algorithm produces a unique dataset. de Rassenfosse (2018)

collect data on virtual patent markings for 100 firms, but cannot measure product introduc-

tion, sales, or prices, nor do they offer sector-wide coverage. Some private firms also link

patents to products for clients (e.g., FairTech, IPStrategy, Powering Ideas, IntellectPeritus),

but their datasets are confidential and limited to client portfolios.
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Figure 1: Product and Patent Data Sets
NONCONFIDENTIAL // EXTERNAL

ABC Company ABC CompanyFirm Match

Patents-to-Products Match

upc4

upc1 upc2

upc5

upc7

[Unmatched]

pat1 pat2

pat5pat4
pat7

pat3

pat6

Detergents Humidifiers

“Laundering 
composition”

“Combination 
warm and cool 
mist humidifier”

“Multicast data 
communication 
method”

PatentsProduct Categories

Notes: This diagram exemplifies the construction of the data sets linking products and patents. In this example, under
Firm-level Match, all patents assigned to ABC Company are matched to all products sold by ABC Company. With Patent-
to-Products Match, pat4 and pat7 match to upc1 and upc4 products that comprise a product category “Detergents”; pat1,
pat2, and pat5 match to upc2, upc5, and upc7 that comprise a product category “Humidifiers”; patents pat3 and pat6 are
unmatched.

2.1 Data

Product Data – Our primary source of product information is the scanner data set from

NielsenIQ Retail Measurement Services (RMS), provided by the Kilts Data Center at the

University of Chicago Booth School of Business. This data set is collected from point-of-

sale systems in grocery, drug, and general-merchandise stores. The data set consists of more

than one million distinct products identified by Universal Product Codes (UPCs), which

are scanned at the point of sale. Each UPC consists of 12 numerical digits that are uniquely

assigned to each product, and we use these to identify products. UPCs carry information

about the brand and a rich set of product attributes like size, packaging, and flavor.

The data focus on the consumer packaged goods (CPG) sector, which accounts for 14% of

total goods consumption in the U.S.9 This sector includes both food and non-food categories,

such as health and beauty aids, over-the-counter pharmaceuticals, household supplies, and

general merchandise—including cookware, small electronics, gardening products, and other

durable consumer goods. Our data cover the years from 2006-2015 and combine all sales,

quantities, and prices at the national and annual levels. We use the panel structure of

each UPC to measure its entry year. This product data set covers about 40% of the CPG

9Consumer Brands Association (2024) attributes 10% of the U.S. economy to the CPG industry in 2022.
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sector sales, and nearly the universe of firms and new products in the sector. Appendix A.1

provides additional details about the coverage and representativeness of NielsenIQ RMS to

measure product innovation in the consumer goods sector.

Patent Data – Our main source of data for patent analysis is the USPTO data on the

universe of published patent applications, granted or not. We use the original bulk data

files provided by USPTO’s Bulk Data Storage System for our analysis. Our sample initially

contains information on more than 7 million patent applications filed by more than 500

thousand patent assignees in the years 1975-2017. For each patent, we use information

about the patent application year, patent status (granted, pending, or abandoned), patent

technology classifications, forward patent citations received, the number of claims on a

patent, and whether it is a utility or design patent. We also extensively use text from

patent applications, as we describe in more detail below. Appendix A.2 gives more detail

about our sample and the variables we use.

2.2 Matching Algorithms

2.2.1 Matching Firms

We match patents to products at the firm level using firm names from the patent and

product data sets. For products, we obtain firm names from GS1 US, the official source

of UPCs, which connects barcodes to the selling firm. For patents, we start with assignee

names, typically the original patent holders, which may not necessarily reflect the current

owners due to sales or reorganizations. We therefore combine USPTO re-assignment data

with Thomson Reuters Mergers & Acquisition data to identify the most current patent

holders. This step assumes that when firms merge or one acquires another, the surviving

firm inherits all prior patents.

Firm names often differ across data sets due to formatting, abbreviations, or misspellings,

complicating the matching. To address this, we developed a name-cleaning algorithm to

standardize firm names, building on methods from the NBER Patent Data Project (Hall,

Jaffe and Trajtenberg, 2001) and Akcigit, Celik and Greenwood (2016). Details are provided

in Appendix A.3.

2.2.2 Patents-to-Products Match

To link patents to products, we use detailed product and patent descriptions and apply

modern text analysis tools that are increasingly being used in economic research (Younge

and Kuhn, 2016; Kelly et al., 2021; Webb, 2019; Kalyani et al., 2025). We proceed in three

9



Figure 2: Patents-to-Products Match

Step 2. Patent and product category term vectors

Step 3. Classifying patents into product categories

Match validation

Patents’ title & abstract: 
”Detergent”, “Nonionic”…

Patents’ classification & 
Title of citing patents

Step 1: Defining product categories

Detergents
Product descriptions: 
“Detergent”, “Heavy duty”, 
“Liquid” … 

Technical words: 
“Nonionic”

K-Means 
Clustering

TF-IDF Similarity 
Score

Threshold similarity  + Production condition

Filtering process patents

Patents to Products

NielsenIQ & Wikipedia: 
”Detergent”, “Nonionic”…

Manual checks

Virtual patent markings Match robustness

CPG-only firms
+

+ +
+

Notes: This diagram illustrates the steps undertaken for the patent-to-products match underlying the construction of the
firm-product category-level data over time.

steps. In the first step, we group products into product categories—a set of similar products,

to which a patent can be linked. In the second step, we create a vector of terms describing

product categories and patents. In the third step, similarity scores between each patent and

every product category vector are computed to classify each patent into a product category

and filter out patents unrelated to CPG products. Extensive validation and robustness

checks of the procedure are then explored.

In what follows, we concisely describe each step with more technical details delegated to

Appendix A.4. Figure 2 provides a schematic summary of the matching steps and validation

exercises to further aid the reader. An example of a patent and its corresponding product

introduction is shown in Figure 3.

Step 1. Defining Product Categories – Our first goal is to carve out well-defined sets

of products—which we call product categories—that collect distinct and sufficiently large

sets of similar products that would meaningfully relate to a distinct set of patents. Nielsen
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Figure 3: Patent and Product: Procter & Gamble

(a) Patent application in 2011 (b) The first Tide Pods in 2012

Notes: Additional examples are presented in Appendix A.6.

provides a classification, but its levels are either too detailed or too broad for our purposes.

In the original data, each product belongs to one of 1,070 detailed product modules. These

modules aggregate products with similar technological features, but very similar products

may still fall into different modules. For example, “Detergents-packaged” and “Detergents-

heavy duty-liquid” are distinct modules, though too similar to assign patents to one but not

the other. By contrast, Nielsen also provides a more aggregated scheme with 114 product

groups, which are often too broad. For instance, “Bathroom scale,” “Blender appliance,”

“Breadmaker appliance,” “Vacuum and carpet cleaner appliance,” and “Coffee and tea

maker appliance” are all combined in the group “Housewares, appliances,” despite being

quite distinct. Hence, we aim to create an intermediate categorization—more aggregated

than modules but less than groups—to associate patents with a well-defined set of products.

To this end, we aggregate product modules using a clustering procedure. We first expand

the short module descriptions in NielsenIQ data with hand-collected Wikipedia articles. For

each of the 1,070 modules, we manually assign one or two closely matching Wikipedia ar-

ticles.10 For example, “Detergent-packaged” and “Detergent-heavy duty-liquid” are both

assigned to the “Laundry detergent” page, while “Cleaners-humidifiers/vaporizers” module

is linked to the “Humidifier” and “Dehumidifier” entries. The use of Wikipedia to encode

textual knowledge is common in the machine learning literature (e.g., BERT, fastText). Its

advantage for our purposes is that it provides technical product descriptions and compre-

hensive texts for our analysis.

10The Wikipedia assignments were independently done by three research assistants, then cross-checked
and finalized by the authors. The mapping is available upon request.
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For each module, we then construct a representative document from the module title, the

Wikipedia title, and the full article text.11 We parse the text into single words and two-word

phrases, apply lemmatization, and weight terms with the standard term-frequency-inverse-

document-frequency (tf-idf) method (Aizawa, 2003), which downweights common words less

useful for classification. We then l2-normalize the resulting term-frequency vectors.

With representative vectors in place, we cluster modules using k-means (Lloyd, 1982).

This partitions the vector space into clusters of similar products by minimizing within-

cluster variance. As a baseline, we aggregate the 1,070 modules into 400 clusters, which

we call product categories. This strikes a balance between merging very similar prod-

ucts and maintaining distinctiveness across categories. For instance, “Detergent-packaged,”

“Detergent-heavy duty-liquid,” and “Detergent-light duty” form the “Laundry detergent”

category, while “Cleaners-humidifiers/vaporizers” and “Humidifier and Vaporizer appliance”

form the “Humidifiers” category.

Appendices A.4.1 and A.4.2 describe our NLP methods in detail, including clustering,

quality checks, and robustness exercises. Appendix B.1 shows the sensitivity of our results

to using NielsenIQ groups instead of our product categories, bypassing clustering altogether.

Step 2. Constructing term vectors for patents and product categories and cor-

responding similarity scores – Our goal is to assign patents to product categories

using text analysis. To do so, we collect representative documents for patents and product

categories and convert them into term-frequency vectors.

For patents, we use texts from the title, abstract, international patent classification

description, and titles of cited patents. These fields are most informative about content and

possible applications. We concatenate them into one document for each patent, then apply

the same parsing, lemmatizing, tf-idf weighting, and normalization as before.

For product categories, we use the titles of all modules comprising the category and

their corresponding Wikipedia articles to construct weighted, normalized term-frequency

vectors. To improve matches to consumer products and filter out high-tech patents owned

by NielsenIQ firms but outside our coverage, we add pseudo-product categories. These help

prevent misclassification of unrelated patents.12 After reviewing patents held by firms in

our sample, we selected 19 diverse pseudo-categories (e.g., “computers,” “software,” “touch-

screen”) and created their respective term vectors from their Wikipedia descriptions.

We then compute similarity scores between the vectors of each patent and product

11Module and Wikipedia titles, as well as the first 10% of the article, are weighted 10 times more since
they contain the most informative content.

12For example, Samsung Electronics produces phones and TVs not covered by NielsenIQ; we want to
exclude patents associated with these products.
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category. For a patent p with vector fp and a product category j with vector fj, similarity

is defined as the cosine similarity sjp = fj × fp. This measure lies in [0, 1], with zero

indicating no word overlap and one indicating identical texts. Appendix A.4.3 provides

further details.

Step 3. Defining patent-product category match and non-matches – Next, we

use the similarity scores between products and patents, and assign each patent to a product

category or designate it as a non-match. Given that some patents may relate to general pro-

duction processes rather than specific products or pertain to products outside the consumer

goods sector NielsenIQ covers, we provide the option to classify a patent as a “non-match,”

meaning it is not assigned to any product category.

For each patent, we narrow the set of potential product categories to those with similarity

scores above the threshold similarity or those ranked in the five highest similarity scores. We

tested different threshold levels, and in our baseline algorithm, we set a threshold similarity

of 0.025, which we use to filter out the patents unrelated to the products we consider.

We further use NielsenIQ data to exclude categories where firms never sell any products

(i.e., production condition). If the remaining set of potential categories is not empty, we

assign the patent to the category with the highest similarity score. Otherwise, the patent

is designated as a non-match.13

Our methodology assumes one product category match for each patent. However, some

patents may be more general in nature, relating to multiple categories. Our baseline al-

gorithm abstracts from this possibility. Nonetheless, our procedure for defining product

categories is designed to ensure that they encompass a broad range of technically similar

products, making it plausible for a patent to relate to only this range of products.14 In

Appendix A.4.4, we present more details of this procedure.

2.2.3 Match Statistics and Validation

Table 1 provides statistics of the data used in our analysis. We have annual data for all

34,665 firms that sold at least one product in our consumer goods sector data (CPG firms).

The raw USPTO patent data cover information from 1975 to 2017, but because our product

data only cover years from 2006 to 2015, our analysis can only consider annual variation

from 2006 to 2015. In this period, the USPTO data include about 3.4 million patent

applications in total and about 500 thousand patent applications filed by CPG firms. The

13Appendix B.1 shows the sensitivity of our main findings to higher similarity thresholds.
14In this sense, the methodology delivers a many-to-many patent-to-product match, where each patent

can be matched to multiple products of the firm.
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Table 1: Match Statistics

Period
1975-2017 2006-2015

Number of patent applications
All assignees in USPTO 7,304,072 3,386,208
CPG firms: firm-level match 1,046,030 505,544
CPG firms: patents-to-products match 399,684 190,575

Number of firms
All CPG firms 34,665
CPG with at least one patent applied in 1975-2017 5,209
CPG with a patent applied in 2006-2015 3,266

Notes: Match statistics for the baseline firm-level and firm × category level data sets.

firm × category data set resulting from the patents-to-products match includes 40% of those

patent applications. The remaining 60% of patents, while filed by CPG firms, have been

filtered out as they are not associated with products covered by our data, highlighting the

importance of allowing for non-matches.

We perform an extensive set of validation exercises to evaluate the robustness and quality

of our patents-to-products match. We use four main types of validation exercises: manual

checks, external validations using online-collected data on patent markings, analysis of the

robustness of the algorithm-implied similarity scores and placebo tests, and validation of

non-matches with respect to non-CPG products and process patents.

i. Manual checks – We manually verified many of the patent-to-products matches to

evaluate whether our judgment on the best product category for a patent aligned with the

algorithm’s chosen category. Table A1 in the Appendix lists 100 patent applications from

top-selling firms within the largest product categories, as per NielsenIQ’s data. It is evident

that the patent titles reflect the assigned product categories well. We also drew a random

sample of 150 matched patents and examined their content. We determined that about 80%

had a plausible match, while the remainder showed a looser connection in our assessment.15

In summary, although some noise is inevitable, our visual assessments reassure us of the

match’s adequate quality.

ii. External validation: Virtual patent markings – Next, we employ virtual patent

markings to validate our matches. Some firms use virtual patent markings to notify the

15The evaluation was carried out by a research assistant and the authors based on our best judgment.
Given the complexity of many patents, some errors are unavoidable. The corresponding table is available
upon request.

14



public that their product is patented by publishing the products and the corresponding

patents protecting them online. Our website searches revealed that very few firms in our

dataset utilized virtual patent markings. Even when they did, only a small subset of prod-

ucts and patents were included in the markings. Nevertheless, these data present a unique

opportunity for externally validating our matching algorithm for a subsample of patents.

For Procter & Gamble (P&G) and Kimberly Clark (KC), we collected 400 virtual patent

markings from the company websites and mapped the products listed on the websites to our

product categorization. We then validate this markings-based patents-to-product category

correspondence against our match. For the sample of matched patents, we see that for

79% of patents, the product category from virtual markings is the most or the second-most

preferred product category based on our similarity scores. Appendix A.5.2 provides more

details about the analysis.

iii. Robustness of the match and placebo tests – We evaluate the robustness of the

product category choice by our matching algorithm to potential small perturbations in the

algorithm. For the algorithm to be robust against small changes, we should observe that

the highest-ranked product categories have substantially higher similarity scores with the

patents than lower-rank product categories do. Appendix A.5.3 shows this is the case. Next,

we verify that we are indeed carving out well-defined neighborhoods in the technological

space by matching patents into distinct categories. For that, we compare the actual distri-

bution of similarity scores between patents classified in the same product category versus a

placebo group of patents drawn at random. Appendix A.5.4 shows that the distribution of

similarity scores between pairs of patents within product categories is indeed very different

and first-order stochastically dominates that of the placebo group.

iv. Validating non-matches – In the last step of the matching algorithm, multiple

criteria were used to allow for the possibility that some patents filed by CPG firms were not

directly associated with any of the consumer-good categories and, hence, would need to be

filtered out. Indeed, as mentioned above, 60% of patents did not match using our preferred

algorithm. A valid “non-match” can arise for two main reasons. First, a patent may relate

to goods that the firm produces outside the CPG sector; second, a patent may be about a

general process or method that does not strongly affect the introduction of products. We

validate our non-matches against these two possibilities.

Non-CPG products–

Since our data do not cover products outside the CPG sector, we should expect our patents-

to-products match to produce more non-matches for firms that more heavily produce non-
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CPG products. For example, we should expect patents of Samsung Electronics, which only

has a subset of products present in our data (e.g., phone accessories and smaller consumer

electronics), to have more non-matches than the patents owned by Procter and Gamble,

whose product lines are entirely covered by Nielsen. Indeed, 87% of P&G patents and only

35% of Samsung patents match to our products. To systematically explore this pattern, in

the spirit of Hoberg and Phillips (2016), we use information from publicly traded companies’

10K reports to manually identify public firms whose output is mainly in the consumer-goods

sector.16 By classifying firms into CPG-only firms and those that are not CPG-only (selling

many products outside NielsenIQ coverage), we find that 92% of patents of CPG-only firms

match based on patents-to-products match. As expected, this share is lower for non-CPG-

only firms (36%)—Figure 4. This provides additional support that the algorithm filters out

irrelevant patents not associated with our product data.

Process patents–

Our match of patents to products should also filter out the general process and method

patents that have a low association with product introductions. For example, some process

patents may be aimed at reducing production costs and be less associated with product

creation. Although distinguishing such general process patents from product-related patents

is challenging, we use existing external procedures to proxy for process patents and compare

them with the algorithm’s non-matches. Firstly, we argue that the design patents are clearly

product-related and should have the highest match rate in our patents-to-products match.

Next, for utility patents, following Bena and Simintzi (2017), we use patent claims text to

create proxies for process-related and product-related patents. We classify patents whose

claims start with “methods” and “processes” as process patents, while the rest are product

patents.17 As shown in Figure 4, design patents–those classified as product patents with the

highest certainty, have the highest match rate of 56%. This is followed by product patents

at 41% and process patents at 33%–supporting the idea that process-related patents have

the lowest association with product introduction.

Still, one may wonder why a sizable share of process-related patents match our products.

This is not surprising considering that many patents with “method” and “process” claims

pertain to product introductions rather than just improving general efficiency and cost

reduction.18 For example, Frito-Lay’s “Method for reducing the oil content of potato chips”

(ID 11777839) may lead to higher-quality, low-fat chips, and P&G’s “Method for whitening

16We matched 270 publicly traded companies over our sample period and classified 23% of them as
CPG-only firms. See Appendix A.5.5 for more details.

17Additional details about the exercise are presented in Appendix A.5.5.
18Tham, Baslandze, Sojli and Liu (2025) show that process improvements incentivize subsequent product

innovation.
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Figure 4: Match Validation. CPG-only Firms and Product-Related Patents
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Notes: Panel (a) shows the share of patents that match with product categories in which firms ever sell a product. The left
figure compares patents of the CPG-only and non-CPG-only firms, while the right figure compares process, product-related,
and design patents. CPG-only firms and non-CPG-only firms refer to the sample of firms defined in Appendix A.1. Process
and product-related patents are defined in Appendix A.2.

teeth” (ID 13150392) may lead to the introduction of new teeth-whitening products.

Overall, these exercises offer reassurance that our algorithm successfully filters out

patents unrelated to the products in our data.19 This ensures that our analysis consistently

centers on product innovations and the patents most plausibly related to them, maintaining

a consistent scope.

2.3 Measures of Product Introduction and Patenting

2.3.1 Product introduction

Our measures of product introduction are based on the number of products that firms in-

troduce to the market and the quality improvements in those products. We use the product

data described above to identify the entry dates of products in the market and their respec-

tive characteristics and performance. Our first innovation measure at the firm×category

level is the number of new products of firm i (in product category j) in year t, as in

Broda and Weinstein (2010) and Argente, Lee and Moreira (2018):

Nijt ≡
Tijt∑
u=1

1[u is entrant],

where product u is sold by firm i in product category j, Tijt is the number of products

that firm i sells in j as of period t, and 1[u is entrant] is an indicator that takes the value

of one if u is a new barcode in t. This measure is simple and parsimonious but does not

distinguish major product innovations from innovations that make relatively minor changes

19Nevertheless, we also later show the robustness of our analysis, completely excluding these process-
related patents with qualitatively similar results.
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to a product’s characteristics. In contrast to the previous literature, we construct the

second set of measures of quality-adjusted new products that deals with this potential

drawback by explicitly accounting for differences in characteristics across new products:

qNijt ≡
Tijt∑
u=1

qu1[u is entrant],

where qu ∈ [0, 1] is a measure of quality that we describe below. Together these two metrics

allow us to account for differences in both the quantity and quality of product innovation

across firms and over time.

Our baseline measure of product quality aims at capturing differences in novelty and

economic impact across new products. We build on Argente and Yeh (2022) and use detailed

information on product attributes that is available from the product data. Products can then

be compared on the basis of characteristics associated with their attributes {vu,1, ..., vu,A}.20

We test if each new product has characteristics distinct from those of all existing products

available in the market, and we compute the quality of a new product as a weighted sum of

its novel characteristics across all product attributes:

qu ≡
A∑
a=1

ωa1[vua is new].

where ωa are weights that reflect the economic value associated with a particular attribute.

We develop a novel approach to estimate weights that capture the importance of each

attribute by using “shadow prices” from hedonic pricing regressions (Bresnahan and Gordon,

1996). The underlying assumptions are that the degree of novelty of a product should

be reflected in its price, and that the price, in turn, captures the value of the product’s

embodied characteristics as determined by their respective shadow prices. A new product

has a high novelty score if it has many new characteristics and/or if its characteristics are

associated with high implicit prices. We provide details on the properties of this procedure

in Appendix A.7, along with some evidence that the novelty score is strongly associated

with the performance of the firm and its products.21

20For example, “children” and “regular” are two mutually exclusive characteristics associated with the
attribute “formula” for “pain remedies-headache” products. Naturally, the number and type of attributes
varies across product categories. For example, the product category “pain remedies-headache” includes 10
attributes: brand, flavor, container, style (i.e. children, regular), form, generic, formula (i.e. regular, extra
strength, rapid release), type (i.e. aspirin), consumer (i.e. trauma, migraine), and size. On average, we
observe that the different product categories include between 5 to 12 attributes. Appendix A.7 gives details.

21We show that our measure is correlated with the growth rate of the firm, the share of sales generated
by new products, and the average duration of new products in the market even after conditioning on the
number of products being introduced by the firm (Table A2 in the Appendix).
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We use three alternative measures of new product quality to evaluate the robustness of

our empirical results. First, we use a simpler version of the quality measure that weighs

each attribute equally (quality q1 ). This measure only captures variation in the share of

new product characteristics contained in a product. Second, we use a weighted quality

measure using weights that reflect “shadow sales” (quality q2 ). This measure assigns lower

quality to new products that are associated with high shadow prices but do not reach many

customers. Finally, we use a measure of residual demand taken from Hottman, Redding

and Weinstein (2016) and Argente, Lee and Moreira (2024) (quality q3 ). This measure

does not use information about the degree of novelty of a product and instead captures the

appeal of new products relative to other products sold in the market, under some functional-

form assumptions. Overall, our baseline measure and these alternative metrics allow us to

consider many critical dimensions of the quality of new products and to assess the robustness

of our results.

2.3.2 Patent Measures

Using an approach similar to how we measured product introduction, we compute measures

that allow us to account for differences in the quantity and quality of patent applications

across firms and over time. Our baseline measure is the number of patent applications

(Pijt). Using our patent-product category match, we are also able to measure the number

of patent applications filed by firm i in product category j in year t as follows:

Pijt ≡
Pit∑
p=1

1[p is match to j].

Throughout the paper, we use information about whether a patent was granted and infor-

mation about patent citation counts to compute our measures of patent quality. Patent

applications that become granted patents (gPijt) are perceived as high-quality patents

because the patent office deemed them novel enough to not be rejected. We compute the

number of patent applications that are granted as:

gPijt ≡
Pit∑
p=1

1[p is granted]× 1[p is match to j].

We also define patent citations (cPijt) as the total number of patents weighted by forward

citations received in the first five years since the application was filed:22

22A 5-year citations measure attempts to reduce the truncation issue inherent to citations—the fact that
patents filed more recently have had less time to accumulate citations (Hall et al., 2001).
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cPijt ≡
Pit∑
p=1

cp × 1[p is match to j].

Measures based on forward citations have traditionally been used to assess the economic and

technological significance of a patent (for earlier contributions, see Pakes (1986), Schanker-

man and Pakes (1986), Trajtenberg (1990)).

2.4 Summary Statistics

Table 2 provides summary statistics on the product- and patent-related variables for firms

in our sample, grouped by their patenting activity. We split firms into three groups: (i)

firms that never filed a patent application, (ii) firms whose last application was filed before

2006 (the start of the NielsenIQ data), and (iii) firms that filed a patent application between

2006 and 2015.

The share of patenting firms and the rate of product introductions in the consumer

goods sector are comparable to those in other manufacturing sectors. More than 5,000

firms (15%) applied for at least one patent, and over 3,000 firms (9.5%) filed during 2006-

2015. For comparison, Graham, Grim, Islam, Marco and Miranda (2018) link Census data

to the USPTO and find that 6.3% of manufacturing firms had at least one granted patent

between 2000 and 2011—a comparable statistic in our sample is 7.6%.23 Table 2 shows

that the average product introduction rate is 19%. While no equivalent comprehensive data

exist for other sectors, Goolsbee and Klenow (2018) use Adobe Analytics data on online

transactions and report product introduction rates comparable to those in other non-durable

consumer manufacturing sectors.24

Firms with patent applications between 2006 and 2015 file more than six patents per year,

on average. Because many patents receive no citations, especially in the first five years, the

average number of citation-weighted applications (cPijt) is close to the raw number (Pijt).

These firms may hold some design patents, but the majority are utility patents. Patenting

firms are on average larger: they sell more products, operate in more categories, and have

higher sales.

Substantial innovation is associated with firms that never patented. Table 3 shows that

54% of new products were introduced by never-patenting firms. Accounting for novelty,

about 65% of quality-adjusted product introduction comes from these firms.25 On average,

23These patenting rates are at least three times higher relative to the entire US economy (Graham, Grim,
Islam, Marco and Miranda, 2018; Mezzanotti and Simcoe, 2025).

24Goolsbee and Klenow (2018) show that some durable goods (e.g., furniture), not covered in our dataset,
have higher entry rates than non-durables (e.g., food).

25This result holds across different quality adjustments. For example, never-patenting firms account for
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Table 2: Summary Statistics by Firm’s Patenting Status

Patents Patents
No Patents before 2006 2006-2015

Product data
Number of products 15.49 31.08 78.35
Number of new products (N) 2.58 5.26 13.45
Average quality of new products (q) 0.27 0.20 0.20
Quality-adjusted number of new products (qN) 0.46 0.62 1.48
Product introduction rate (n) 0.19 0.17 0.22
Quality-adjusted product introduction rate (qn) 0.07 0.04 0.06
Sales from all products 2371.59 9392.09 37094.71
Sales from new products 454.74 1811.01 8130.00
Number of product categories 2.36 3.07 5.46
Average quality of new products (q1) 0.13 0.10 0.10
Average quality of new products (q2) 0.18 0.11 0.12
Average quality of new products (q3) 0.06 0.32 0.10

Patent data
Number of patent applications (P ) 0.00 0.00 6.34
Number of granted patent applications (gP ) 0.00 0.00 4.57
Number of citations-weighted patent applications (cP ) 0.00 0.00 5.88
Stock of patent applications 0.00 11.33 125.36
Stock of granted patent applications 0.00 11.02 107.63
Stock of citations-weighted patent applications 0.00 17.97 215.24

Number of firms 29215 1943 3266
Observations 186934 15803 29052

Notes: The table shows averages of product-based and patent-based variables of the firm-level dataset. The first column groups
firms with no patents; the second column includes firms that patented before appearing in NielsenIQ RMS (before 2006); the
third column covers firms with patents in 20062015. Product introduction statistics can be computed only for 20072015 because
entries for products introduced in 2006 cannot be determined (left-censoring). Sales are reported in thousands of dollars,
deflated by the CPI for all urban consumers. Patent statistics are highly skewed; averages are reported after winsorizing
patent variables at the top 0.1%.

patenting firms introduce more incremental products, while non-patenting firms contribute

a larger share of novel innovations. Since these statistics rely on firm-level matches, they

implicitly attribute all new products of a patenting firm to its patents. Highly diversified

firms may patent in one category while introducing unrelated products in others, overstating

the role of patents in product introduction. This highlights the importance of establishing a

closer patent-product link. We therefore replicate the exercise at the firm × category level.

Table 3 shows that firms that never patented in a category account for the majority of new

products in that category.

We also decompose sectoral growth from 2006 to 2015 by firms’ patenting status:

65% of q1N and 77% of q2N . For q3, no good counterpart to q3N can be constructed, but Table 2 shows
that q3 is not necessarily higher for patenting firms.
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Table 3: Share of New Products Accounted for by Patenting Firms

Quality-adjusted
New Products, N New Products, qN

Match 1 (firm-level)
Firms with patents in 2006-2015 0.38 0.28
Firms with patents before 2006 0.08 0.07
Firms with no patents 0.54 0.65

Match 2 (patents-to-products)
Firm × category with patents in 2006-2015 0.23 0.16
Firm × category with patents before 2006 0.07 0.05
Firm × category with no patents 0.71 0.79

Notes: The table shows the share of product innovation measured by our two benchmarksproduct introduction (column 1)
and quality-adjusted product introduction (column 2)accounted for by firms and firm×categories with or without patents.

Growth‘06−‘15︸ ︷︷ ︸
7%

= GrowthPatent
‘06−‘15︸ ︷︷ ︸

4%

× sPatent
2006︸ ︷︷ ︸
0.72

+ GrowthNo Patent
‘06−‘15︸ ︷︷ ︸

14.4%

× sNo Patent
2006︸ ︷︷ ︸

0.28

(1)

where Growth refers to sales growth, and sPatent
2006 and sNo Patent

2006 are sales shares of firm×categories

with or without patents.26 These decompositions show that although non-patenting firms

are smaller and account for less sales, they contribute more to aggregate growth–58% of

sectoral growth.

Our data cover categories with substantial heterogeneity in entry rates and patenting

intensity. We classify dry grocery, frozen foods, dairy, deli, packaged meat, fresh produce,

and alcoholic beverages as food categories. Non-food categories include health and beauty

(including over-the-counter drugs), non-food grocery, and general merchandise (cookware,

electronics, household supplies). Appendix Figure B1 shows that food and non-food cate-

gories have similar entry rates but distinct patent intensities. Patenting firms and patents

per product are more prevalent in non-food categories. It is therefore not surprising that

many product introductions, particularly in food, are not directly linked to patents. Some

products represent only minor upgrades and may not meet the patentability requirement

of “novelty and non-obviousness,” so raw patent counts naturally miss such incremental

innovations.

26We first write RevCPG
t =

∑
j

∑
i∈Ωj

Patent
Revijt +

∑
h

∑
i∈Ωj

No Patent
Revijt, where the second sum is

across categories and Ω denotes the set of firms with and without patents in category j. Taking percentage
changes in sales yields (1).
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3 Patents and Product Innovation on the Market

Product innovation—the introduction of new and improved products to the market—is a

key contributor to economic growth and a central aspect of endogenous growth models

(Romer, 1990; Grossman and Helpman, 1991). Absent the direct innovation measures, the

researchers have relied on indirect inference (using employment and sales) or patent metrics

to proxy for firm and aggregate innovation in the market. The use of patents to proxy for firm

innovation has a long tradition and is supported by studies showing a positive relationship

between patents and a firm’s stock market value, growth, and productivity (Hall, Thoma

and Torrisi, 2007; Balasubramanian and Sivadasan, 2011; Kogan, Papanikolaou, Seru and

Stoffman, 2017). However, skeptics of patent metrics argue that patents are a tool for

legal protection against competitors, and the prevalence of strategic patents, especially in

recent decades, makes it hard to infer how well these measures reflect true innovations in

the market (Cohen, Nelson and Walsh, 2000; Jaffe and Lerner, 2004; Boldrin and Levine,

2013).

Leveraging our novel match between patents and product introductions, we directly eval-

uate how patenting relates to actual innovation in the market. Since product innovation is a

key driver of firm growth in the consumer goods sector (Hottman, Redding and Weinstein,

2016; Argente, Lee and Moreira, 2024), and our data provide detailed product-level infor-

mation, we focus primarily on the link between patents and product introductions, while

also discussing process innovation in Sections 2.2.3 and 3.2.1. The richness of our data

further allows us to examine heterogeneity in this relationship across product types and

firm characteristics. We find that patent filings are, on average, positively associated with

subsequent product introductions, with the strongest relationship observed at a one-year lag

following the patent application. The association persists over several years and is notably

stronger in non-food product categories.

However, the relationship between patents and product innovation weakens with firm

size. Larger firms file more patents relative to the number of products they introduce, re-

sulting in a lower observed conversion rate of patents into market innovations. We rule out

measurement-based explanations for this pattern—including data coverage, measurement

error, and process patents—and interpret this as evidence that patents held by larger firms

are less likely to result in actual product innovation. Additional evidence from patent charac-

teristics supports this interpretation: large firms’ patents tend to be less novel, receive fewer

forward citations (especially from other firms), and are more likely to be litigated—patterns

consistent with strategic patenting behavior, as opposed to efforts aimed at technological

or market advancements.
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3.1 Baseline Estimates

To estimate the relationship between patents and subsequent product introduction by firms,

we use the following baseline specification at the firm × category level over time:

Yijt = β Pijt−1 + αij + γjt + uijt (2)

where Yijt is the product introduction rates for firm i in category j in year t, and Pijt−1

is the patenting rates by the firm i in category j in year t − 1. Product introduction

rate is measured as the number of new products or quality-adjusted new products over

the total number of the firm’s products; patenting rates are measured as the number of

patent filings (all, granted, or citation-adjusted) over the cumulative stock of patents, net of

depreciation.27 The key coefficient of interest is β that captures how product introduction

activities relate to patenting activities. By using firm × category × year level data, we

can control for many potential confounding effects using product category-specific trends,

γjt (e.g., controls for market-wide demand for specific products), and firm-category specific

effects, αij (e.g., controls for the effects of firm-specific market power on the sales of specific

products). Importantly, this set of fixed effects also ensures that results are not driven by

differences in patentability or coverage across distinct product categories or firm-specific

time-invariant predispositions to apply for patents.

Table 4 shows the estimates of equation (2) for both product introduction and quality-

adjusted product introduction rates. The rows present results from patent applications,

granted patents, and citation-adjusted patents. The table shows a significant positive rela-

tionship between product introduction and its quality-adjusted measure with prior patent

applications. This relationship is stronger for granted patents and citation-adjusted patents.

This is not surprising given that granted and citation-adjusted patents are more innovative

and might contain valuable ideas for new product introduction; at the same time, the patent

grant confers protection, incentivizing product commercialization.

We also explore the association between product introduction and patents for various

product categories in Appendix Table B2. Our analysis indicates that the association

between product introduction and patents holds across both food-related and non-food

categories—including health and beauty care, non-food grocery, and general merchandise—

and is comparatively stronger for the latter.

Exploring different lag structures in our baseline regression specification can also help us

gain insights into the dynamic relationship between patent filings and product introduction.

27Using rates for product innovation and patenting removes scale effects, but in Appendix Table B1, we
also show similar results in (log) levels.
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Table 4: Product Introduction on Patenting Rates

Product Introduction Product Introduction
Quality-Adjusted

(1) (2) (3) (4) (5) (6)
Patents(t-1) 0.0445*** 0.0174***

(0.008) (0.003)
Patents granted(t-1) 0.0469*** 0.0200***

(0.009) (0.003)
Patents citations adj.(t-1) 0.0562*** 0.0264***

(0.013) (0.005)

Observations 409,641 409,641 408,493 409,641 409,641 408,493
R-squared 0.357 0.357 0.358 0.302 0.302 0.303
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data. Product and quality-adjusted product introduction rates
are defined as the number of new products or quality-adjusted new products over the total number of products in the firm
× category × year. Product quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of
patent applications in a particular category-year over the total number of cumulative patents in that category-year, net of
depreciation; Patents granted is the ratio of the firm’s number of granted patent applications in a particular category-year over
the total number of cumulative patents in that category-year; Patents citation-adjusted is the ratio of the firm’s number of
citations-weighted granted patents in a particular category-year over the total number of citation-weighted granted patents in
that category-year. A standard 15% annual depreciation rate is used (Hall et al., 2005). Observations at the firm × category
× year level with zero patents are included in the regression. Standard errors are clustered at the firm × category level.

Our baseline specification uses a one-year lag between patent filing and product introduction

to account for the fact that it may take longer for firms to develop and commercialize a new

product after they apply for patents. Figure 5 plots the estimated coefficients for different

lags, where k refers to the lag (in years) between patenting and product introduction. We

find the strongest positive association between patent filings and product introduction with

one and two-year lags, with lower but persistent effects in subsequent years.

3.2 Firm Size Heterogeneity

Next, we delve into the role of patents for firms with different market positions. Our analysis

begins with examining patenting and product introduction in relation to the size of firms

within a market. Panels (a) and (b) of Figure 6 plot the average product introduction rates—

the ratio of new products and quality-adjusted new products over a firm’s stock of existing

products—for firms in different firm size percentiles. Firm size percentiles for each category

are defined based on the distribution of the average firm-category sales. Market leaders—

larger firms within product categories, have lower product innovation rates. On average,

firms in the top sales quintile have annual introduction rates of about 20%, while firms in

the bottom quintile have rates more than twice as large. Larger firms do not compensate
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Figure 5: Product Introduction and Patenting Rates: Dynamics
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Note: The figure plots the estimated coefficients after estimating equation Yijt+k = βkPijt + αij + γjt + uijt+k , k =
−3, ..., 0, ..., 4 for product introduction rates n in (a) and quality-adjusted product introduction rates qn in (b). Product and
quality-adjusted product introduction rates are defined as the number of new products or quality-adjusted new products over
the total number of products in the firm × category × year. Product quality measures are defined in Section 2.3.1. The variable
P is the ratio of the firm’s number of patent applications in a particular category-year over the total number of cumulative
patents in that category-year, net of depreciation. The regression includes firm × category and category × year fixed effects.
Standard errors are clustered at firm × category. The vertical bands represent +/- 2.45 × st. error of each point estimate.

for this decline in the rate of new product introduction with innovations of higher quality.

On average, firms in the top sales quintile have quality-adjusted product introduction rates

of 9.7%, while firms in the bottom sales quintile have rates of approximately 16%.28

Panels (c) and (d) show that larger firms, on average, file more patents relative to new

products they introduce. In particular, both the ratio of new patents filed over quality-

adjusted new products introduced (Panel (c)) and the ratio of patenting rate over quality-

adjusted product introduction rate (Panel (d)) both increase with firm size in the market.29

Note that this higher intensity of patenting activity relative to product introduction is not

explained by the possibility that larger firms introduce fewer but more novel products as

the presented product introduction numbers are adjusted for their quality.

The patterns above suggest that the relationship between product introduction and

patenting changes with firm size. We now, more formally, explore how the relationship

varies with firm size by estimating equation (2), interacting patenting with firm size (firm

sales in product category). As before, we control for time × product category and firm

× product category fixed effects to ensure that potential confounders, such as differences

in patentability across firms and product categories, do not drive our results. Table 5

shows the negative interaction term with size for both product introduction and quality-

28Figure B2 in the Appendix confirms similar patterns using alternative product quality metrics.
29If we do not scale our measures of patenting, results are even starker: the unconditional probability of

patenting and the total number of patents filed by large firms are much higher than they are for small firms
(see Figure B3 in the Appendix).
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Figure 6: Product Introduction and Patents-to-Products by Firm Size
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(b) Quality-Adj. Product Introduction Rate
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(c) Patents-to-Quality-Adj. New Products
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(d) Patent Rate-to-Quality-Adj. New Product Rate

Note: These figures plot the production innovation rates and patents per innovation measures over firm size percentiles. For
each firm × product category, we compute average sales and define firm size percentiles based on the average sales distribution
in that product category. Each panel plots the average value of the respective variables in each percentile. Panel (a) shows the
average product introduction rate (new products divided by the total number of products sold); Panel (b) shows the quality-
adjusted product introduction rate (quality-adjusted new products divided by the total number of products sold); Panel (c)
shows the ratio of patent applications (×1000) per quality-adjusted new products; and Panel (d) shows the patenting rate over
quality-adjusted product introduction, where the patenting rate is calculated including observations at the firm × category ×
year level with zero patents.

adjusted product introduction rate.30 Figure 7, in addition, visualizes the differences in

patents-to-product introduction relationship across different-size firms. Panel (a) plots the

coefficients from estimating equation (2), interacting patenting rate with firm size quintile

dummies. As before, firms are ranked within product categories based on their average

sales within each category. While the patents-to-product introduction coefficient is 0.15

for the lowest quintile of firms, it is 6.4 times smaller for the firms in the top quintile. A

similar comparison holds for quality-adjusted product introduction regressions from Panel

(b). Finally, we also demonstrate that this relationship remains robust across different types

of products. Appendix Figure B4 confirms that the link between patent filing and product

30Appendix Table B3 shows similar results with different quality adjustments.
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Table 5: Product Introduction on Patenting: by Size

(1) (2) (3) (4)
Product Introduction Product Introduction

Quality-Adjusted

Patents(t-1) 0.0445*** 0.0860*** 0.0174*** 0.0459***
(0.008) (0.023) (0.003) (0.008)

Size(t) 0.0102*** 0.0012***
(0.000) (0.000)

Patents(t-1) x Size(t) -0.0037** -0.0025***
(0.002) (0.001)

Observations 409,641 409,641 409,641 409,641
R-squared 0.357 0.362 0.302 0.303
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data, similar to Table 4 but introducing size (firm sales in
category-year) and size interaction with patenting. Product and quality-adjusted product introduction rates are defined as the
number of new products or quality-adjusted new products over the total number of products in the firm × category × year.
Product quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of patent applications in a
particular category-year over the total number of cumulative patents in that category-year, net of depreciation. Observations
at the firm × category × year level with zero patents are included in the regression. Standard errors are clustered at the firm
× category.

introduction is weaker for larger firms in both food and non-food categories.

Figure 7: Product Introduction on Patenting: by Size
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(b) Quality-Adj. Product Introduction Rate

Notes: The figure plots the βk coefficients from estimating the regressions Yijt =
∑5
k=1 βk Pijt−1 × Qijk + αij + γjt + uijt,

where Yijt is product introduction rate (Panel (a)) and quality-adjusted product introduction rate (Panel (b)) of firm i in
product category j in year t; Pijt−1 is the patenting rate of firm i in product category j in year t− 1; Qijk are dummies equal

to one if the firm i’s average sales in product category j are in the kth quintile of firm sales distribution in j. The regression
includes firm × category and category × year fixed effects. Standard errors are clustered at the firm × category level.
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3.2.1 Declining Patents-to-Innovation Relation with Size: Robustness

In this section, we show that the observed decline in the patents-to-innovation relationship

with size is not driven by our matching algorithm, data coverage, or econometric specifica-

tions, indicating that this is a robust pattern in the data: patents held by larger firms are

less likely to translate into product innovations in the market. We examine several poten-

tial confounding explanations for the weakening of the patents-to-product relationship with

firm size: differences in the timing of product introductions by firm size, mismeasurement

of process patents, differential data coverage, and size-dependent measurement error.

Timing of product introductions by size. Our baseline results explored the

patents-to-product innovation relation with a one-year lag; however, if larger firms take

longer to commercialize their inventions—for example, due to conducting more experimental

research—this could weaken the contemporaneous association between patents and prod-

uct introductions for them. To assess this possibility, we use the dynamic specifications of

equation (2) for large and small firms. Figure 8 shows that the patents-to-products relation

for smaller firms–those with average revenue below the median revenue in their respective

category—is stronger across all time lags. This suggests that, at least for the sample frame

in our data, we do not find evidence that patents held by larger firms are associated with

product innovation with a longer delay.

Figure 8: Product Introduction and Patenting Rates Dynamics: By Size
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(a) Product-to-patent introduction, βk
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Note: The figure plots the estimated coefficients after estimating equation Yijt+k = βkPijt + αij + γjt + uijt+k , k =
−3, ..., 0, ..., 4 for product introduction rates n in (a) and quality-adjusted product introduction rates qn in (b). Product and
quality-adjusted product introduction rates are defined as the number of new products or quality-adjusted new products over
the total number of products in the firm × category × year. Product quality measures are defined in Section 2.3.1. The variable
P is the ratio of the firm’s number of patent applications in a particular category-year over the total number of cumulative
patents in that category-year, net of depreciation. The regression includes firm × category and category × year fixed effects.
Standard errors are clustered at the firm × category level. The vertical bands represent +/- 2.45 × st. error of each point
estimate.
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Process innovations by size. One possible concern with interpreting the decline in

regression coefficients with firm size as evidence of a weaker relationship between patents

and innovation among larger firms is the potential inclusion of process patents. Specifically,

some patents may focus on cost reduction or improving production efficiency rather than

directly promoting product innovation. If these process patents, which are unrelated to

product innovation, are disproportionately utilized by larger firms (Cohen and Klepper,

1996) and inadvertently included in our analysis, this could explain the observed decrease

in regression coefficients for larger firms.31

We address this concern in several ways. First, we note that our algorithm explicitly

filters out general process and method patents that are not product-specific, increasing

the likelihood that matched patents correspond to products in our data. Recall that in

validating our matching algorithm (Section 2.2.3), we use independent proxies for product-

and process-related patents drawn from claims texts, following Bena and Simintzi (2017),32

and show that the algorithm successfully filters out the unrelated process patents while

retaining those plausibly tied to product introductions (e.g., “method for whitening teeth”).

Second, because the margin of error in filtering out unrelated process patents may

vary with firm size, we examine the share of process-matched patents—according to our

algorithm—that are also classified as process-related by Bena and Simintzi (2017), and as-

sess how they evolve with firm size. We find no systematic relationship between the share

of process-related patents in a firm’s portfolio and firm size (Appendix Figure B5).33

Third, we entirely exclude patents classified as process-related using the above proxy

and repeat our analysis. Panel (a) of Figure 9 demonstrates that the positive relationship

between patents and products, along with its diminishing gradient as firm size increases,

remains robust when these process-related patents are omitted. Panel (b), which includes

only process-related patents, shows that these patents do not have a statistically significant

association with product introduction.

31A related concern is that larger firms may file patents primarily for licensing rather than for their own
product commercialization. While our data attribute patents to the original holders and lack comprehensive
information on temporary licensing agreements, prior research (Fosfuri, 2004; Gambardella, Giuri and Luzzi,
2006) finds that larger firms are less likely to license out their patents–if anything, reinforcing the observed
decline in the patents-to-product relationship with firm size.

32About 25% of the matched patents are classified as process patents using this classification method.
33We obtain similar results using the process patent classification from Tham, Baslandze, Sojli and Liu

(2025). These additional results are available upon request.
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Figure 9: Product Introduction and Patenting by Size: Process and Product
Patents (Quality-Adjusted)
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(a) Product Patents
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(b) Process Patents

Notes: The figures use a specification equivalent to Figure 7, for quality-adjusted product introduction rates, splitting matched
patents into process- and product-related patents based on classification in Bena and Simintzi (2017). The left panel plots
regression coefficients including only product-related patents. The right panel plots regression coefficients including only
(matched) process-related patents. Standard errors are clustered at the firm × category level. Appendix Figure B6 reports
corresponding results using unadjusted for quality product introduction rates.

Finally, if the weaker association between process patents and product introductions

among large firms reflects a greater focus on cost-reducing innovations, we would expect this

to manifest in price dynamics. To test this, we examine whether process patenting by larger

firms is associated with lower price growth. Appendix Figure B7 plots coefficients from

regressions of firm-product category-year average prices on the patent introduction rate,

interacted with firm size quintiles. The specification includes firm-category and category-

year fixed effects, mirroring the approach in Figure 7. We find no evidence that patenting

leads to subsequent price declines within firms—nor is such an effect present specifically

among larger firms.

Data coverage by size. Another potential concern is that the relatively weaker as-

sociation between patents and product introduction of larger firms that we estimate could

be explained by differences in data coverage across firms of different sizes. The patent data

set encompasses the entire portfolio of USPTO patents held by firms, whereas our product

data set does not cover products outside the consumer goods sector or products sold inter-

nationally. This could, in turn, result in lower rates of patent attribution to new products

in our data for firms that also operate in other sectors or internationally.

To address the concern about products outside the CPG sector, we first note that,

as discussed earlier, our empirical findings are based on the patents-to-products match,

which filters out patents unrelated to the consumer goods sector, reducing this concern.
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However, we also reestimate our results on a smaller sample of firms that sell exclusively CPG

products. Appendix Figure B8 shows broadly similar patterns of the weakening relationship

between patents and product innovation for larger firms, albeit the estimates are more noisy

because of a smaller sample size.

Internationalization may also contribute to differential data coverage by firm size. Patent

protection is always local and only pertains to the jurisdiction in which it is filed. Larger

firms, in particular, may introduce products abroad that are not captured in our product

data, even if they file patents in the U.S. To investigate this, we incorporate two new

datasets. First, we merge our data with the EPO’s PATSTAT data to capture international

patent filings.34 About 60% of patents in our sample are filed in countries beyond the U.S.,

with the average patent filed in 3.2 countries. This suggests that NielsenIQ firms actively

protect intellectual property internationally and likely sell abroad. However, controlling for

the share of international patents does not affect our baseline results, and this variable is

not statistically significant in explaining U.S. product innovation rates (Appendix Table

B4). This finding aligns with our analysis of the Mintel Global New Products Database

(MNPD), which tracks product launches across major retail channels worldwide.35 We find

that most products launched abroad by top global firms (as identified by NielsenIQ) are also

introduced in the U.S., typically within 1.2 years of their initial international launch. This

suggests that our product data provides a reasonably comprehensive view of global product

introductions. Thus, the weakening patents-to-product introduction relationship for larger

firms is unlikely to be driven by international launches that are systematically missing from

our product data.

Measurement error by size. Lastly, we also assess the possibility that our textual

analysis of patents inadvertently weakens the relationship between patents and products

of large firms. A potential concern is that the text of patents filed by firms of different

sizes may be systematically different, and that our matching algorithm may be less effective

in ascribing patents filed by larger firms to specific product categories. To better gauge

this concern, we study the textual characteristics of patents, including patent document

length, number of unique words, textual diversity, and the relative entropy of patents’ word

distributions. We evaluate whether these characteristics vary systematically across firms of

different sizes within the same product categories. We do not find systematic differences

in the textual characteristics of patents filed by large and small firms in these metrics.

Furthermore, we also do not observe significant differences in the share of matched patents

across firm size (see Figure B9 in the Appendix for details). Overall, our exercises suggest

34We thank Francesca Lotti for sharing the data with us.
35See Argente, Oberfield and Van Patten (2025).
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that differences in data coverage and the properties of the matching algorithm are unlikely

to explain the weaker association between patents and product innovation for large firms.

3.2.2 Large Firms and Strategic Patents

There are several potential reasons why the relationship between patents and innovation

weakens with firm size. Larger firms may have stronger incentives to employ patents as

a means of defending their market position and deterring competition, without necessar-

ily commercializing the patented ideas. This behavior would align with well-documented

strategic patenting practices in the literature, including “sleeping patents”—ideas that are

patented but not commercialized or licensed;36 “patent thickets”—dense clusters of over-

lapping patents; “patent evergreening”—the practice of filing patents on incremental or

secondary features to extend exclusivity beyond the original 20-year term;37 and “defensive

patents”—portfolios accumulated primarily as insurance against litigation, particularly rel-

evant for large firms that are more attractive targets for lawsuits. At the same time, larger

firms may face lower marginal costs of patenting and enforcement due to scale economies

in R&D, availability of legal teams, and litigation resources. Regardless of the underlying

mechanism, our findings indicate that patents held by larger firms are less likely to translate

into product innovations.

We provide additional evidence suggesting that larger firms’ patents tend to be less novel

and scientifically valuable, but more likely associated with strategic motives. We compare

patent characteristics of market leaders, the largest firms in each product category, to other

firms in the same category. Table 6 presents cross-sectional comparisons of average firm-

level patent characteristics. Odd columns show raw comparisons; even columns add controls

for the number of firms in the category and firm fixed effects for multi-category firms.

Columns 1-2 focus on text-based novelty (similarity to prior filings), showing that lead-

ers’ patents are significantly less novel.38 Columns 3-4 show leaders’ patents receive fewer

forward citations, suggesting weaker follow-on innovation. Columns 5-6 show a smaller share

of those citations come from competitors, implying limited spillovers. Columns 7-8 show

36Driscoll’s, which controls a third of the U.S. berry market, invests heavily in patented berry varieties
it often does not commercialize. It has one of the highest patent-to-product ratios in our data and has
recently pursued lawsuits to defend its portfolio (Rosenbaum, 2017).

37An example is the P&G patent for Swiffer Wet Jet mops. Rather than patenting the mop’s features,
P&G patented the specific function of the disposable cloths. The original and over 80 follow-up patents
have made market entry difficult for competitors. During our sample period, generic alternatives were
virtually absent, and P&G held about 95% of the sweeper mop market, well above the 40-50% average
share of leaders in other categories. For recent work on the topic, see Torrisi, Gambardella, Giuri, Harhoff,
Hoisl and Mariani (2016); Shapiro (2000); Hall, Graevenitz and Helmers (2021); Righi and Simcoe (2020);
Mezzanotti and Simcoe (2025).

38This measure applies only to firms with multiple patents.
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Table 6: Patent Characteristics: Leaders vs Followers

(1) (2) (3) (4) (5) (6) (7) (8)
Text Novelty Citations Share Cited Others Share Litigated

Leader -0.042*** -0.033*** -0.538** -0.675*** -0.062** -0.076** 0.004 0.008**
(0.008) (0.008) (0.247) (0.257) (0.027) (0.030) (0.005) (0.003)

Observations 2,633 1,830 2,179 1,526 1,569 1,095 2,179 1,526
R-squared 0.015 0.405 0.002 0.247 0.003 0.335 0.000 0.094
Controls N Y N Y N Y N Y

Notes: The table compares the average patent characteristics of leaders and the other firms. “Leader” is a dummy equal
to one for the firm with the highest sales in a given category. Text Novelty is a patent-level metric between zero and one.
The text-based patent novelty measure is equal to one minus the text similarity between a given patent and its most similar
predecessor within a firm (patent text similarity is computed using the same methods outlined in Section A.4.3); Citations is
the mean number of citations received by patents in the first five years after the application; Share Cited Others is the share
of forward citations accounted for by citations from other firms different from the patent owner; Share Litigated is the share
of patents involved in litigation. Data on litigations come from the USPTO Patent Litigation Dataset. Due to truncation
concerns, we provide statistics for the patents filed in 2005. Controls include the total number of firms in a category and fixed
effects at the firm level.

leaders’ patents are somewhat more likely to involve litigation.39 Together, these patterns

suggest that large-firm patents are less connected to scientific and market innovation, but

more consistent with strategic motives.

4 Patents, Innovation, and Firm Growth

In Schumpeterian growth models, firms can expand through two channels: their own success-

ful innovations and the reallocation of market shares from their competitors. Accordingly,

firms may pursue two distinct strategies to grow their revenues and market shares. First,

they can innovate by introducing new products to the market. Second, they can protect

their existing positions by reducing competitive pressure, for example, through strategic

patenting. These two strategies differ significantly in their social value: while innovation

contributes directly to aggregate productivity growth, the second strategy often results in

reallocation without a comparable productivity gain. With our data, we can shed light on

the relative importance of these strategies for firm growth. We observe firm revenues, ac-

tual product introductions, and patent filings, which may either reflect genuine innovation

or serve primarily as a defensive mechanism to safeguard market position.

We estimate the relationship between patent filings and firm revenue growth, both un-

conditionally and conditional on product innovation. In doing so, we also contribute to the

39Litigation is rare–0.04 share of patents–but economically meaningful. The consumer products sector
led patent litigation from 1998-2017, surpassing biotech, pharma, and electronics (PwC, 2018).
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interpretation of private patent value estimates derived from stock market data, as in Hall,

Thoma and Torrisi (2007) and Kogan et al. (2017). These existing estimates conflate two

components of patent value: the productive component—where patents signal true tech-

nological advances that translate into new products and revenue gains—and the strategic

component —where patents serve primarily to deter competitors and facilitate reallocation

without innovation. By relating patent filings to revenue growth, with and without prod-

uct introductions, we help disentangle the productive and strategic roles of patents in firm

growth.

To estimate the revenue premium associated with firm patent portfolio and product

introduction, we estimate the following baseline relationship:

log Salesijt = ψ log Cum Patentsijt−1 + ρ logNijt + log Salesijt−1 + αij + γjt + εijt, (3)

where the dependent variable is the logarithm of firm i sales in product category j at time

t, log Cum Patentsijt−1 is the cumulative number of firm’s patent applications in product

category j in year t−1 net of depreciation, and Nijt is the log number of product introduction

using, as before, both product counts and quality-adjusted product counts. All specifications

control for lagged firm sales, category-year, and firm-category fixed effects, and a hyperbolic

sine transformation is used for logs to account for zeros.

Table 7 presents results from alternative specifications around the baseline model. Col-

umn (1) excludes controls for product introductions and shows that an increase in patent

application stock is associated with higher revenue in the following year. Specifically, a 10%

increase in the stock of patents raises sales by 1.5%. In contrast, the elasticity of sales with

respect to new product introductions is much larger, estimated at 0.517, which aligns with

prior research highlighting that sustained product launches are a key driver of firm growth

in this sector (Argente, Lee and Moreira, 2024).

Columns (3) and (4) present our baseline specification, including both patent filings and

product introductions, with and without quality adjustments. As expected, the coefficient

on patents declines relative to column (1), reflecting that realized product introductions ac-

count for part of the revenue premium associated with patenting. However, the remaining

premium remains sizable. The residual revenue premium not explained by market inno-

vations is consistent with the view that patent portfolios serve a protective role, limiting

competition and reallocating market share to the patenting firm. It may also reflect con-

sumers’ perceptions of patented products as being of higher quality.40

The last two columns of Table 7 examine firm heterogeneity in the relationship between

40Table B5 in the Appendix replicates these specifications for prices and quantities, showing that the
incremental revenue from patenting arises from both higher quantities sold and higher prices.
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Table 7: Sales on Patents, and Product Introduction
(1) (2) (3) (4) (5) (6)

Log Sales (t) Log Sales (t)

Log Cum Patents(t-1) 0.151*** 0.118*** 0.139*** -0.101* -0.028
(0.031) (0.029) (0.030) (0.058) (0.062)

Log New Products 0.517*** 0.517*** 2.026***
(0.006) (0.006) (0.023)

Log Q-new Products 0.760*** 3.453***
(0.013) (0.054)

Log Cum Patents(t-1) × Size(t-1) 0.018*** 0.014***
(0.004) (0.004)

Log New Products × Size(t-1) -0.130***
(0.002)

Log Q-new Products × Size(t-1) -0.219***
(0.004)

Observations 408,161 408,161 408,161 408,161 408,161 408,161
R-squared 0.900 0.905 0.905 0.902 0.910 0.905
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y
Log Sales(t-1) Y Y Y Y Y Y

Notes: The table shows regressions of log sales on patent stock in the previous period and the product introduction, conditional
on firm sales in the previous period, using firm × category × year data. Log Cum Patents(t-1) is the log number of patent
applications by time t-1–net of depreciation, and the Log New Products (Q-new Products) is the number of new products
(quality-adjusted new products) introduced at time t. To account for zeros, logs are calculated using the hyperbolic sine
transformation. Baseline regression specifications in (3) and (4) are based on equation (3). The last two columns interact
patent stock and product introduction variables with firm log size (sales) in the previous period. All regressions additionally
control for log sales (t-1), time-category and firm-category fixed effects. Standard errors are clustered at the firm × category
level.

sales, product introduction, and patenting. Columns (5) and (6) extend the baseline speci-

fication by interacting patents and product introductions with lagged firm revenue (in logs).

The results reveal striking size-dependent patterns in the sources of growth. Among smaller

firms, product introductions drive revenue growth, while for larger firms, patents yield a

significant revenue premium even after accounting for new products. For example, the

elasticity of sales to patents (product introductions) is 0.03 (1.04) for firms in the bottom

quintile of the size distribution, compared to 0.12 (0.43) for firms in the top quintile. These

results suggest that patents contribute to revenue growth through channels beyond product

innovation, particularly for larger firms. This is consistent with the view that patents help

larger firms deter competition and reduce creative destruction, enabling them to expand

market share without continual product innovation.41

Lastly, our baseline specification uses the cumulative count of patents to reflect the

strength of a firm’s patent portfolio, recognizing that multiple interrelated patents may

41Table B7 shows that the patent revenue premium for larger firms increases after 2010, supporting the
view that strategic patent use has been growing over time (Akcigit and Ates, 2023).
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jointly contribute to defending the firm’s market position. Appendix Table B6 replicates the

analysis using patent flows—i.e., annual applications—instead of stocks. While the results

remain qualitatively similar, the estimated elasticity of revenue with respect to patent flows

is smaller.42 This suggests that it is the accumulation of patent stocks, particularly for

larger firms, that plays a key role in sustaining revenue growth.

4.1 Patents and Creative Destruction

The previous results showed that firm patenting is associated with revenue growth beyond

its effect through product introduction—especially for larger firms within product cate-

gories. This aligns with longstanding views that patents help firms deter competitors and

limit creative destruction (e.g., Jaffe and Lerner, 2004; Cockburn and J. MacGarvie, 2011;

Williams, 2013; Lampe and Moser, 2015). Below, we provide additional evidence supporting

this mechanism and explore why the patent-related revenue premium is particularly large for

bigger firms: by reducing the threat of creative destruction, patents may help incumbents

sustain market share without continual innovation.

We examine whether firm patenting is associated with reduced product entry by rivals.

Using our data, we test whether patents filed by market leaders are followed by declines

in product introductions by their competitors—whom we refer to, for simplicity, as market

followers. We start by identifying the market leader in each category as the firm with the

highest sales in that category and the followers as the remaining firms operating in that

market.43 Then, for each year t and product category j, we compute the number of new

products introduced by the leader NL
jt and the average product introduction by its followers

NF
jt in t, and we compute the number of patent applications introduced by the leader P L

jt

and by its followers PF
jt until t. We evaluate how product introduction by followers responds

to patenting (and product introduction) of the leaders using the following specification:

logNF
jt = ηF logP L

jt−1 + αF logNL
jt−1 + θF

j + γF
t + εF

jt, (4)

where ηF is our coefficient of interest, measuring the association of patents of leaders with

the product introduction by followers. We control for lnNL
jt−1 to ensure that the relation-

ship between leaders’ patents and followers’ product introduction is not driven by possible

direct interactions between the leader’s and followers’ product offerings (such as learning

42The estimated patent revenue premium in these specifications is in the ballpark of the private patent
value estimates reported in Kogan, Papanikolaou, Seru and Stoffman (2017).

43To have a static firm-level measure, we define leaders as of 2006, which is the first year of our data.
However, the results are not sensitive to a different choice, like using average sales over all years. Moreover,
we consider alternative definitions of market leaders (e.g., top quintile), and the results are robust.
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Table 8: Patenting of Market Leaders and Followers
Followers Leaders

Log NF Log NL

(1) (2) (3) (4)
Leaders Followers

Log P L (t-1) -0.071*** -0.059*** Log PF (t-1) -0.015 -0.012
(0.018) (0.018) (0.061) (0.061)

Log NL (t-1) 0.010* 0.005 Log NF (t-1) 0.215*** 0.186**
(0.006) (0.006) (0.079) (0.079)

Observations 3,192 3,192 Observations 3,188 3,188
Category Y Y Category Y Y
Time Y Y Time Y Y
Controls N Y Controls N Y

Notes: The table shows the relationship between the patents of leaders (followers) and the product introduction of followers
(leaders). The leader is defined as the firm with the highest sales in a given category in 2006; the followers are defined as
the rest of the firms in the category. In columns (1) and (2), the dependent variable is the log average number of products
introduced by followers at time t, and the independent variables are the log number of patent applications by leaders until
time t− 1 and the log number of new products introduced by the leader at time t− 1. In columns (3) and (4), the dependent
variable is the log number of products introduced by leaders at time t, and the independent variables are the log average
number of patent applications filed by followers until time t − 1 and the log average number of new products introduced by
the followers at time t− 1. Columns (2) and (4) also control for total sales in the category-time. The inverse hyperbolic sine
transformation is used for logarithms.

from new products on the market).44 We also include time- and category-fixed effects to

control for time trends and differences in the intensities of patenting and product innovation

across product categories. Likewise, we estimate a symmetric regression that estimates the

relationship between leaders’ innovation and the followers’ patenting:

logNL
jt = ηL logPF

jt−1 + αL logNF
jt−1 + θL

j + γL
t + εL

jt (5)

These regressions help us test whether the relation between competitors’ patents and prod-

uct introduction is affected by whether we focus on leaders or followers.

Table 8 presents the estimated coefficients. Column (1) shows that product introduction

by followers is negatively correlated with the size of the leader’s patent portfolio. This

result suggests that followers reduce the introduction of new products in categories where

the leader intensifies its patenting efforts. By contrast, we do not find evidence that leaders’

product introductions crowd out those of followers, conditional on their patenting activity.

In column (2), we also control for total sales of the market to account for potential shifts over

time in the importance of different types of products. In turn, columns (3) and (4) show that

product innovation by leaders is not significantly related to the followers’ patenting activity.

Hence, while patents can be thought of as a protective tool used to hinder product-market

44We also use quality-adjusted new products in all of these regressions, and the results are similar.
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competition, our results indicate that this mechanism is most relevant for large market

leaders. These findings suggest that leaders are more likely to accumulate patents in ways

that limit competition, helping to explain the sizable revenue premium from patents among

larger firms.

5 A Simple Model

We develop an illustrative Schumpeterian model that underscores the importance of mea-

suring both product innovation and patenting activity. The model rationalizes our findings

that patents held by larger firms are less likely to result in product innovations and that

the revenue premium from patents used to deter creative destruction is greater for larger

firms. This framework also allows us to assess the implications of patents filed for protective

purposes without corresponding market innovations, which we refer to as strategic patents.

The model distinguishes between a firm’s decision to innovate and its decision to patent,

thereby highlighting how innovation and protection incentives diverge with firm size. As

firms expand, the attractiveness of introducing new products declines due to rent canni-

balization, whereas the incentive to patent increases as firms seek to defend their exist-

ing market positions. Consequently, larger firms are more likely to engage in strategic

patenting—filing patents without subsequent product commercialization. Although such

behavior may help incumbents preserve market dominance, it ultimately weakens creative

destruction and slows the pace of innovation.

Product Introduction and Patenting – We consider a partial equilibrium framework

of innovation in a single product line. The product line is held by an incumbent who produces

a product of quality q and earns profit Π = πqγ with 0 < γ < 1. Hence, an incumbent with

a higher-quality product is larger and earns higher profits, but faces diminishing returns

to quality.45 Incumbents can improve their products and file patents. We model a one-

time decision of product introduction and patenting for an incumbent with quality q who

exogenously obtains an idea of size λ.46

Product introduction is uncertain. The firm chooses the probability of product introduc-

tion zm by incurring a commercialization cost cmz2m
2

. If successful, it brings a higher-quality

product q + λ to market and earns higher profits.

45See Appendix C.1 for microfoundations and discussion of decreasing returns to quality. An assumption
of γ < 1 is also supported by our calibration.

46For simplicity, the idea is either used or disappears. A dynamic version would yield similar qualitative
predictions but require tracking the firm’s evolution in product and patent spaces.
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At the same time, the firm chooses the probability of patenting zp, incurring cost
cpz2p

2
,

which covers, for example, research, filing, legal, and enforcement expenses. A patent

provides protection against replacement by competitors. Even without commercialization,

a patent filing makes the idea public, so the highest available quality in the economy becomes

q+λ (Hegde, Herkenhoff and Zhu, 2022). Thus, the highest quality available in the economy

may differ from what is commercialized and available to consumers. In this sense, firms’

product and patent activities are distinct: product introduction need not imply patenting,

and patenting need not imply product introduction, an important departure from standard

models of innovation and growth.

Creative Destruction – Incumbents can be displaced by entrants through creative de-

struction. For that, entrants must introduce a higher-quality product and overcome any

patent barriers. Entrants arrive at an exogenous rate p and draw an innovation step λe

from a uniform distribution on (0, 1) relative to the highest available quality. Building on

“the shoulders of giants,” entrants learn both from existing products and patents. Thus,

the quality frontier is q + λ if the incumbent introduces and/or patents, and q otherwise.

Normally, an entrant wins the market by offering higher quality than the incumbent.

This may not hold if the incumbent holds patent protection. Patents protect the incum-

bent’s quality by creating a “wall” of height ε (0 < ε < 1) that entrants must clear to enter,

similar to Abrams, Akcigit and Grennan (2013). The parameter ε reflects how different an

entrant’s innovation must be, which can depend on IP strength and patent scope. Thus,

the probability of creative destruction is p without patents and p (1− ε) with patents (see

Appendix C.2). Unlike standard models, not all quality improvements reach the market: en-

trants may be blocked by incumbents’ patents, highlighting the separation between product

and patent spaces.

Value Function – Consider an incumbent with initial product quality q.47 Let V 11

denote its (gross) value when it both introduces a new product and patents, V 10 when it

only introduces, V 01 when it only patents, and V 00 when it does neither. Then we obtain

V 11(q) =
π(q + λ)γ

r + p(1− ε)
, V 10(q) =

π(q + λ)γ

r + p
,

V 01(q) =
πqγ

r + p(1− ε)
, V 00(q) =

πqγ

r + p
,

(6)

47We analyze a single incumbent in a product category facing potential entry. While the model can
be generalized to multiple firms with different market shares, we focus on a single incumbent and study
comparative statics of product introduction and patenting with respect to firm size (sales), captured in the
model by q.
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where r is the interest rate. The value of the incumbent firm with existing quality q is then

an expectation over these values, net of product introduction and patenting costs:

V(q) = max
zm,zp

{
zmzpV

11(q) + zm(1− zp)V 10(q) + (1− zm)zpV
01(q) (7)

+ (1− zm)(1− zp)V 00(q)− cmz
2
m

2
−
cpz

2
p

2

}
.

Strategic Patenting – A central feature of this economy is that incumbents can pursue

strategic patenting—patenting without product introduction—represented by option V 01(q).

We show that this option is increasingly valuable for larger firms.

To evaluate how the incentives for patenting and product introduction vary with firm

size, consider the revenue premium from strategic patenting: (V 01 − V 00):

V 01 − V 00 =
πεpqγ

(r + p(1− ε))(r + p)
.

The revenue premium rises with firm size q: larger incumbents have more value to

protect and thus reap greater returns. By contrast, incentives for product introduction fall

with size (∂(V 10−V 00)
∂q

< 0), reflecting the Arrow-replacement effect : incremental returns from

new products diminish with firm size. These opposing forces explain why larger firms gain

more from strategic patenting. Incentives for strategic patenting also increase with stronger

patent protection (ε) and higher profit flows (π).

Although all patents slow creative destruction and prolong incumbents’ market presence,

only non-strategic ones foster aggregate innovation. Strategic patents instead block real-

location without delivering offsetting gains, potentially hindering growth. These dynamics

underscore the need to assess their broader impact in richer models. The next section pro-

vides a back-of-the-envelope calculation to illustrate these trade-offs within our framework.

5.1 Implications of Strategic Patenting. Quantitative Illustration

We solve the model and present counterfactuals to illustrate how the option to patent with-

out product introduction—strategic patenting—can dampen creative destruction and inno-

vation. Given the stylized nature of the framework, we interpret the results as highlighting

broad qualitative mechanisms rather than providing precise quantitative predictions. The

numerical values should be viewed as rough, back-of-the-envelope calculations for the con-

sumer goods sector we study.

We calibrate the model to match firm growth by patenting status, innovation rates,

patents per product, and sales growth across firm-size percentiles. Appendix C.3 details
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Table 9: Implications of Strategic Patenting. Model Counterfactuals

Benchmark No Strategic No Strategic
& benchm. innov.

Innovation (zm)
Median incumbent 0.2102 0.2102 0.2103
Large incumbent 0.1550 0.1550 0.2794

Creative destruction (τ)
Median incumbent 0.0948 0.0949 0.0949
Large incumbent 0.0915 0.0944 0.0940

Patenting (zp)
Median incumbent 0.0092 0.0024 0.0024
Large incumbent 0.1614 0.0252 0.0477

Notes: The first column shows optimal zm, zp, and τ from the model. The second column considers the
economy with zm as in the benchmark, but where no strategic patents are allowed (no V 01 option). The third
economy again shuts down the strategic patents option, but calculates optimal innovation and patent choices.

the procedure and shows that, despite its parsimony, the model reproduces key patterns in

the data quite well. We then conduct two counterfactuals. First, we provide a back-of-the-

envelope estimate of strategic patents; second, we analyze a policy regime without strategic

patents, where protection is granted only if a patent is tied to a market innovation.

The first counterfactual isolates the “excess” patents filed by incumbents for strategic

rather than innovative purposes. For that, we compare the benchmark economy to a coun-

terfactual where product introduction rates are held at benchmark values, but the strategic

patenting channel is shut down: firms can patent only when introducing a new product im-

provement (shutting down V 01 option). Column (1) of Table 9 reports innovation, patenting,

and implied creative destruction in the benchmark economy for two product lines: one held

by a large incumbent (p90-p95 size percentile in the data) and another by a typical incum-

bent (median size). Column (2) shows the counterfactual. For the same innovation rate,

large incumbents patent 84% less when strategic patents are disallowed. This excessive

patenting reduces creative destruction in the benchmark by 3%. These effects are negligible

for smaller firms, suggesting that large firms rely most heavily on strategic patenting.

Second, we analyze a policy regime without strategic patents where, unlike the previous

exercise, firms optimally choose both patenting and innovation rates. Comparing Column

(3) for this counterfactual with the benchmark shows that, again, incumbents patent less,

which raises equilibrium creative destruction in markets with large incumbents. A key new

margin is that large incumbents innovate substantially more. In the benchmark economy,

incumbents’ product introduction is lower because they rely on strategic patenting to pro-

tect market shares, reducing incentives to innovate. In the no-strategic patents economy,

42



maintaining market position requires genuine innovation rather than defensive patenting.48

Overall, our exercises highlight that large incumbents have high incentives to file strategic

patents that reduce creative destruction and do not meaningfully contribute to the advance-

ment of innovations on the market, and that the patent system where patent protection can

be granted without firms commercializing their inventions stifles not just competitors’ in-

novation but also dampens incumbents’ incentives to innovate.

5.2 Model Extensions and Limitations

To keep the analysis tractable and highlight the core mechanisms, our model abstracts

from several features. For instance, the patenting cost parameter cp is assumed to be

independent of firm size. One might argue that larger firms face lower effective costs due to

their deeper pockets, legal teams, and resources. However, this would only strengthen their

incentives for strategic patenting: lower costs would lead to more patents without product

introduction, further reducing creative destruction. Counterfactual experiments with size-

dependent costs confirm that large firms’ share of strategic patents remains similar to the

baseline (see Appendix C.4). While technological differences make it easier for large firms

to patent without innovating, their fundamental strategic motive, using patents to defend

their large market shares rather than to introduce new products, remains unchanged.

Our analysis also focuses on a single product line, abstracting from spillovers and in-

terconnections across lines. For example, if entrants cannot compete in a line dominated

by large incumbents, they may instead shift to new product lines and create new varieties.

Such general equilibrium effects and richer competition structures are beyond the scope of

this paper but represent promising directions for evaluating patent policy and welfare in

environments where strategic patenting is central.

6 Conclusion

This paper develops the first large-scale patent-to-product match, linking patents to prod-

ucts through textual analysis of USPTO documents and NielsenIQ- and Wikipedia-based

product descriptions. This new dataset allows us to move beyond traditional statistics and

uncover several insights.

We show that most new products are introduced by firms that never patent. Among

patenting firms, filings are positively associated with subsequent product introductions,

48So, patent protection incentivizes innovation, consistent with the innovation-enhancing role of patents
Bryan and Williams (2021)
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but the link between patents and innovation weakens with firm size. Larger firms file more

patents relative to the products they introduce, resulting in a lower conversion rate of patents

into market innovations. At the same time, patenting yields sizable revenue premiums not

explained by product innovation, consistent with the view that patent portfolios serve a

protective role by limiting competition and reallocating market share. In line with this,

we find that followers scale back product introductions in categories where leaders intensify

their patenting.

We rationalize these findings with a simple innovation model showing how larger firms

have stronger incentives to engage in strategic patenting—filing for protection rather than

market innovation. Counterfactual experiments confirm that a large amount of patents by

large firms are strategic, and that their prevalence dampens innovation by leaders and slows

creative destruction in the consumer goods sector.

Our results suggest that reforms tying patent protection more closely to genuine market

innovation could substantially enhance the overall innovation process. While distinguishing

strategic from bona fide patents is inherently difficult, our findings provide guidance. One

option is a working-prototype requirement, forcing applicants to undertake part of the de-

velopment process before securing patent protection—a principle with historical precedent

in the 19th-century USPTO model requirement (Khan, 2005). A complementary approach

is stronger scrutiny at the examination stage, focusing resources on large incumbents, where

the patent-product link is weakest and strategic motives most salient.49

We believe that extending our framework into richer general equilibrium quantitative

models of strategic patenting—capable of evaluating such policies and assessing their ag-

gregate implications—is an important avenue for future research.

49An analogy is trademark law: under the Lanham Act (15 U.S.C. 1051 et seq.), applicants must
demonstrate a bona fide intent to use the mark in commerce.
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Patents to Products:
Product Innovation and Firm Dynamics

Appendix

For Online Publication

A Additional Data Information

A.1 Product Data

Coverage.— The main advantage of the RMS data set is its size and coverage. Overall,
the RMS data consists of more than 100 billion unique sales observations at the week × store
× UPC level. The data set comprises around 12 billion transactions per year which are worth
$220 billion dollars on average. Over our sample period, 2006-2015, the total sales across
all retail establishments are worth approximately $2 trillion and represent 53% of all sales
in grocery stores, 55% in drug stores, 32% in mass merchandisers, 2% in convenience stores,
and 1% in liquor stores. A key distinctive feature of this database is that the collection
points include more than 40,000 distinct stores from around 90 retail chains, across 371
metropolitan statistical areas (MSAs) and 2,500 counties. We keep a balanced set of stores
throughout the entire period under the analysis.

Because of its size, the data provides good coverage of the universe of products in the
consumer goods sector. Our assessment is based on three considerations. First, comparisons
with other scanner data sets reveals that NielsenIQ RMS covers more product introductions
and provides more accurate information on product entry time. Argente et al. (2018) com-
pares NielsenIQ RMS with other scanner data sets collected at the store level and shows
that NielsenIQ RMS covers a much wider range of products and stores. In comparison to
scanner data sets collected at the household level, NielsenIQ RMS also has a wider range
of products because it reflects the universe of all transactions for the categories it covers,
as opposed to the purchases made by a sample of households. For example, NielsenIQ
Homescan covers less than 60% of the products the NielsenIQ RMS covers in a given year.

Second, while the data only covers sales in traditional retail channels and not e-commerce,
we do not expect this to substantially affect the total level of innovations in the sector. Be-
tween 2000 and 2014, the fraction of all retail sales accounted for by e-commerce went from
0.9 to 6.4 percent, according to figures from the US Census Bureau (Hortaçsu and Syver-
son, 2015). Thus, during our sample period, online commerce is still a small part of retail
activity and will affect innovation numbers by firms that only sell online.

Finally, the data covers sales in food and non-food categories (health and beauty aids,
non-food grocery, and general merchandise). However, because the data set has higher
coverage of grocery stores, food categories have relatively higher coverage than some gen-
eral merchandise categories (see, for example, Jaravel (2019) for a thorough comparison of
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NielsenIQ RMS and Homescan with the Consumer Expenditure Survey). We assess the im-
pact of this differential coverage of product categories on our measures of product innovation
by comparing product introduction rates in our data with those in NielsenIQ Homescan and
other sources (e.g. Goolsbee and Klenow, 2018). We do not find a significant association
between sales coverage and the differences in product introductions between data sets across
various product categories. Nevertheless, throughout the paper we evaluate the robustness
of the results when we keep only products that have high coverage.

NielsenIQ Product Classification System.— The data is organized into detailed
product modules that are aggregated into product groups. The product groups are then
grouped into ten major departments. These departments are: Health and Beauty Aids,
General Merchandise, Dry Grocery (e.g., baby food, canned vegetables), Frozen Foods,
Dairy, Deli, Packaged Meat, Fresh Produce, Non-Food Grocery, and Alcohol. For example,
a 31-ounce bag of Tide Pods has UPC 037000930389, is produced by Procter & Gamble,
and belongs to the product module ”Detergent-Packaged” in product group ”Detergent,”
which belongs to the ”Non-Food Grocery” department. The product group ”Detergent”
includes several product modules, including automatic dishwasher compounds, detergents
heavy duty liquid, detergents light duty, detergents packaged, dishwasher rinsing aids, and
packaged soap.

Over time, NielsenIQ expanded coverage of certain product modules (for instance, some
in-store food goods), but we keep a consistent set of product modules that are available
throughout the period. This leaves us with 10 departments, 114 product groups and 1,070
modules.

Defining a Product.— Defining products by their UPCs has some important advan-
tages. First, UPCs are by design unique to every product: changes in any attribute of a good
(e.g. forms, sizes, package, formula) result in a new UPC.This offers a unique opportunity
for economists to identify products at the finest level of disaggregation.

Second, UPCs are so widespread that our data is likely to cover all products sold in
the consumer goods sector. Producers have a strong incentive to purchase UPCs for all
products that have more than a trivial amount of sales because the codes are inexpensive,
and they allow sellers to access stores with scanners and internet sales.

For each product in a year, we define its sales as the total sales across all stores and
weeks in the year. Likewise, quantity is defined as total quantities sold across all stores and
weeks in the year. Price is defined by the ratio of revenue to quantity, which is equivalent to
the quantity-weighted average price.50 To minimize concerns about potential measurement
error caused by Nielsen’s treatment of private-label products to protect the identity of the
retailers, we exclude all private-label goods from the data.

Assigning Products to Firms.— NielsenIQ RMS data does not include information
on manufacturing firms. However, products can be linked with firms using information
obtained from the GS1 US Data Hub. In order to issue a UPC, firms must first obtain a

50We use the weight and the volume of the product to compute unit values.
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GS1 company prefix. The prefix is a five- to ten-digit number that identifies firms in their
products’ UPCs. Argente et al. (2018) provide more details on how to use a subset of the
product UPCs to link producers with products.

The GS1 data include the name and address of the firm associated with each prefix,
which allows us to append a firm name and location to the UPCs included in the Nielsen-
RMS data. A “firm” in the database is defined based on the entity that purchased the
barcodes from GS1, which is typically the manufacturer, such as Procter & Gamble.

Constructing a sample of CPG-only firms.— Any firm that produces at least
one product in the NielsenIQ RMS data is included in our analysis. We refer to these as
CPG firms. However, some of these CPG firms also produce products outside the CPG
sector (e.g. Toshiba, Samsung, Whirlpool), while others produce mostly products included
in the NielsenIQ RMS data (e.g. Procter & Gamble, Kimberly Clark, Kraft). A part of
our analysis is focused on identifying a sample of firms that are solely in the CPG sector.
Inspired by Hoberg and Phillips (2016), we use the firm’s 10-K reports, which are available
from Compustat. The 10-K is a comprehensive summary of a firm’s performance that must
be submitted annually to the Securities and Exchange Commission, in addition to the annual
report. It includes an overview of the firm’s main operations, including its products and
services. We manually classify each business line reported on the 10-K’s into CPG/non-
CPG comparing its description with the description of NielsenIQ modules, and classify each
publicly traded CPG firm into CPG-only if the majority of the firm’s sales results from
CPG business lines. We matched 270 publicly traded companies over our sample period;
we classify 23% of them as CPG-only firms.

As a robustness check, we also use the National Establishment Time Series (NETS)
data, provided by Walls & Associates, which comprise annual observations on specific lines
of business at unique locations over the period 1990–2014. These data allow us to track
sales, employment, and industry classifications of establishments. After matching Nielsen
firm names to those in NETS, we use the industry information of each establishment to
classify firms as primarily operating in the CPG industry or as operating in both CPG and
other sectors. The advantage of these data is that they cover nonpublicly traded firms.
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A.2 Patent Data

Data Details.— Unlike other standard patent data sources such as NBER patent data
(Hall et al., 2001) and the data from the Harvard Dataverse Network (Lai et al., 2014),
we make use of all patents published in the USPTO, including non-granted patent appli-
cations. Using all patent applications, as opposed to just granted applications, offers us
two advantages. First, since patents are usually granted with a lag of roughly two years,
the more recent years of the sample suffer from severe truncation. Looking at all patent
applications alleviates this problem. Second, we can then differentiate between patents that
are granted, pending, or abandoned. We use this as one of the patent quality measures, as
discussed below. Adding non-granted patent information increases the number of patents
in our sample by 1.7 million.

Assigning Patents to Firms.— We begin by selecting all patents that have a valid
assignee name.51 We assign patents to their most recent assignee(s). For this assignment, we
use the current assignee variable from the USPTO (as of 2017, our patent data vintage). The
current assignee variable is missing for some of the patents included in our sample. In such a
case, we start with the name of the original assignee and leverage the USPTO reassignment
data to track any change of patent ownership due to a patent sale or firm reorganizations.
To further track patent ownership through corporate reorganizations, we rely on Thomson
Reuters Mergers & Acquisition data. Our underlying assumption is that patent ownership
is transferred to the acquiring firm in case of corporate reorganization. Thomson Reuters
M&A provides complete coverage of global mergers and acquisitions activity, including
more than 300,000 US-target transactions, since 1970. The data covers mergers of equals,
leveraged buyouts, tender offers, reverse takeovers, divestitures, stake purchases, spinoffs ,
and repurchases. It also provides detailed information about the target, the acquirer, and
the terms of the deal. This comprehensiveness is particularly important given that firms
that appear both in NielsenIQ data and USPTO are most likely large firms that undergo
many corporate reorganizations.

Product-related and Process-related Patents.— Following Bena and Simintzi (2017),
we create proxies for product-related patents and process-related patents based on the for-
mal claims included in patent applications. Patent claims define the scope of a patent’s
protection and hence represent the essence of a patent application. On average, patents in
USPTO have around 15 claims. Some of these are independent claims, while others derive
from them. Claim texts are written in technical terms and often have a rigorous semantic
structure.

The formulaic nature of claims gives us an opportunity to create the following simple
classification. We say the claim is a process claim if the claim text starts with “method”
phrases (“Method for”, “Method of”, “Method in”, “Method define”, and the like) or “pro-
cess” phrases (“Process for”, “Process according”, “Process in”, and the like). Then, as
a baseline, we classify a patent as a process patent if the main (usually, the first) claim

51This step eliminates patents assigned to individuals as well as other patents that are missing assignee
information, which mostly constitute pending patents.
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of the patent is a process claim. The patent is a product patent if it is either a design
patent or a non-process utility patent. In the latter case, claims often start with words like
“Apparatus”, “Device”, and the like. According to this definition, up to 70% of patents
are product-related patents. We also tested an alternative definition that defines process
patents based on the criteria that the share of process claims is larger than 50%. These
two measures are highly correlated (0.74) and our results based on the baseline variable are
robust to this alternative definition.
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A.3 Algorithm of Firm Match

Firm Name Cleaning Algorithm.— We assign each company name (from NielsenIQ
or USPTO data) to a unique company identifier using the following procedure.

Step 1. In the first step, we run all company names through a name-standardization
routine to generate unique company identifiers. Our routine is the following.

(1) After capitalizing all letters, we keep the first part of the company name before the
first comma. (2) We remove leading and trailing instances of “THE”, we replace different
spellings of “AND” words with “&”, and replace accented or acute letters with regular
ones. (3) We remove special characters. (4) We standardize frequent abbreviations using
dictionaries from the NBER Patent Data Project. For example “PUBLIC LIMITED” or
“PUBLIC LIABILITY COMPANY” become ”PLC”;“ASSOCIATES” or “ASSOCIATE”
become “ASSOC”; “CENTER” or “CENTRAL” become “CENT”. (5) We delete trailing
company identifiers. (6) If the resulting string is null, we protect it. (7) We repeat the
previous steps on the original company names except for protected strings, for which we
now keep the whole string and not just the first portion before the comma. (8) If the string
is protected, we remove company identifiers in any place of the string (not just if trailing
as in 5). (9) We remove spaces to further decrease misspellings. (10) We assign unique
company identifiers based on the cleaned names.

Step 2. In addition to the extensive cleaning in Step 1, we take advantage of a “dictio-
nary” that resulted from a large effort undertaken within the NBER Patent Data Project.
After manual checks and searches of various company directories to identify name mis-
spellings and various company reorganizations, the NBER files provide a mapping between
patent assignee names and unique company identifiers (pdpass). Although this data is based
on the assignees of granted patents before 2006, we use this mapping as a “dictionary” that
we use in conjunction with our results from Step 1. This helps us leverage both our al-
gorithm from Step 1 and the NBER pdpass information, combining the strengths of each
method to create new unique company identifiers.

For example, Siemens appears in the data with many different name variations. ”SIEMNES
AG”, ”SIEMANS ATKIENGESELLSCHAFT”, and ”SIEKENS AG” are just a few of such
variations that Step 1 does not capture, but the NBER files identify as names under the
same pdpass. In such a case, we use pdpass identifiers to group the three firms together. On
the other hand, the NBER file does not identify ”SIEMENS CORP” ”SIEMENS AG” and
”SIEMENS” as the same company as the ones referenced by the first three name variations
above. In such a case, we use the unique identifiers from Step 1 to group these firms to-
gether. Finally, after combining information from NBER files with our cleaning after Step
1, we pool all six variations into one new company code.

Our algorithm builds upon proven algorithms from Hall et al. (2001) and Akcigit et
al. (2016). We also applied an extensive number of manual quality checks to our cleaning
algorithm. For example, we identified the largest CPG firms, and for each firm we looked up
the corresponding set of patents on Google Patents to verify that our matching algorithm
was obtaining the same patents.
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A.4 Algorithms of Patents-to-Products Match

A.4.1 Summary of the Methods of Natural Language Processing

For convenience, the following section summarizes general methods from natural language
processing that we refer to throughout our description of the algorithms below.

i) Parsing Methods
We use 1-grams and 2-grams (single words and two-word phrases) as tokens. In general

one could use n-grams, meaning distinct n-length phrases. For the types of documents we
are interested in, however, meaningful and irreducible phrases having 3 or more words are
quite rare. Also note that we will use the terms “word”,“term”, and “token” interchangeably
and these will refer to the set of 1-grams and 2-grams in all cases.

ii) Lemmatizer Methods
We use WordNetLemmatizer provided as part of the NLTK Python module (nltk.org),

which utilizes the WordNet lexical database (wordnet.princeton.edu), to reduce words
to their root forms by removing conjugations like plural suffixes (Fellbaum, 2010). For
instance, the word “compounds” would be mapped to “compound”.

iii) Word Vector Normalization
Patent (or product category) text documents are first converted into term vectors that

indicate, for each term, how many times the term appears in a document. Each document
vector is of lengthM, which is the number of terms that we include in our vocabulary. The
corpus of documents can then be represented by a very sparse matrix of term counts with
elements ckm, where k ∈ {1, . . . , K} = K represents the document (patent or a product
category) and m ∈ {1, . . . ,M} =M represents the term.

We then use a word-based weighting scheme called total-frequency-inverse-document-
frequency (tf-idf) to account for the fact that more common words tend to be less important
and vice versa (Aizawa, 2003). A number of possible functional forms could be used here,
but we choose the commonly used sublinear form

wm = log

(
K + 1

dm + 1

)
+ 1 where dm = |{k ∈ K|ckm > 0}|

Thus if a word appears in all documents, it is assigned a weight of one, while those appearing
in fewer documents get larger weights, and this relationship is sublinear. For our weighting
scheme, we use document frequencies from the patent data, as that corpus is considerably
larger and less prone to noise.

Finally, we are left with a weighted, `2-normalized word frequency vector fk for each
document k, both on the patent and product side of our data, with elements

fkm =
wmckm√∑
m′(wmckm′)

2
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A.4.2 Step 1: Defining Product Categories

We start by developing an intermediate categorization of NielsenIQ products into product
categories that are more aggregated than product modules but less aggregated than product
groups.

Step 1.a - Collect Representative Documents
For each low-level product classification from NielsenIQ (1,070 modules), we explored

different sources of text that might allow us to characterize the modules. First, we studied
sources of text within Nielsen. For example, we explored the use of product attributes from
each UPC, and we found that while informative, some characteristics are shared and not
sufficiently different. Second, we explored sources of data outside Nielsen, like dictionaries
and various websites. After many manual checks, we decided to use Wikipedia pages, and
based on module descriptions, we manually selected the closest Wikipedia articles for each
product module.52

The main advantage of using Wikipedia entries is that they often include technical
descriptions that use words that also appear in patent texts and are comprehensive enough
to cover all modules. The use of Wikipedia text to encode textual knowledge is already
common in the machine learning literature. For instance, two of the most advanced word
embeddings currently available, BERT (Google, Devlin et al., 2018) and fastText (Facebook,
Joulin et al., 2017), use the entire Wikipedia corpus for training purposes, in a addition to
large corpora of text from books and websites. While there are a number of papers in the
economics literature that study Wikipedia, we are unaware of any such usage as a direct
input into a separate analysis.

For each module, we construct a representative document that includes the title of the
module (repeated 10 times), the title of the Wikipedia article (10 times), the entire text (1
time), and the first 10% text of the Wikipedia article (10 times).

Step 1.b - Create Representative Word Vectors
To create the representative word vector for each module, we (i) concatenate all the text;

(ii) apply the parsing and lemmatizing algorithms described above; (iii) exclude terms that
appear in more than 80% of documents (to exclude words like ”the” and ”and”); (iv) and
re-weight according to the tf-idf sublinear transformation described above.

Note that for modules that include multiple Wikipedia articles, we first vectorize each
Wikipedia entry and then average these vectors together to avoid overweighting longer
entries (in an `2-norm-preserving sense).

Step 1.c - Cluster Analysis
We aggregated these module vectors into clusters using the popular k-means clustering

technique. k-means clustering (Lloyd, 1982) is used to find a partitioning of a vector space
into clusters of similar vectors. This procedure allows one to specify the desired number
of clusters K beforehand and yields a partitioning that minimizes the within-group vector
variance, or the average squared distance from the cluster mean.

52To ensure the best selection of these articles, we cross-checked the results after assigning this task to
five independent readers. Some examples of our article selection are: Wikipedia articles titled “Humidifier”
and “Dehumidifier” correspond to the “Humidifier and vaporizer appliance” product module; an article
“Artificial nails” is assigned to the “False nails and nail decorations” module; articles “Soft drinks” and
“Carbonated water” are assigned to the “Soft drinks- carbonated” module.
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Letting x be a given module vector and SKi be a cluster i of a cluster set SK , we choose
our partitioning SK so as to minimize

K∑
i=1

∑
x∈SKi

||x− µi||2, where µi =
1

|SKi |
∑
x∈SKi

x

In our main analysis, we use K = 400 clusters. This choice is supported by extensive
manual checks and experimentation with alternative partitions. We first explore k-means
clustering for K = 100, 200, ..., 900. We find that our baseline k-means clustering partitions
the product space quite well, striking a balance between minimizing the differences of vectors
within a cluster while maximizing the differences across clusters.

Additionally, we show that our clustering of the product space is robust. By experiment-
ing with various other state-of-the-art clustering techniques such as HDBSCAN (Campello
et al., 2013)—a hierarchical clustering algorithm that does not need substantial tuning—we
conclude that many product modules are grouped together independently of the clustering
method used.

Finally, the implied clustering also accords well with the external classification scheme
from NielsenIQ. By comparing our partitioning to the original 114 group aggregation from
NielsenIQ (not used an input in our clustering algorithm), we see that products clustered
into the same product categories also fall into same groups defined by Nielsen.

The final clustering into product categories groups together precisely those product
modules that the patent matching algorithm would have trouble distinguishing between,
and vice versa. For example, with this clustering, the separate product modules “Detergents
– packaged”, “Detergents – light duty”, “Detergents – heavy duty”, “Laundry treatment
aids”, and “Fabric washes – special” are grouped into one product category. The patent
matching algorithm would struggle to accurately map a related patent to only one of these
modules, especially given that the same patent could plausibly lead to innovations in all of
these product modules at the same time.

Step 1.d - Creating Pseudo Product Categories
We create additional pseudo-product categories to describe products outside the con-

sumer goods sector. These pseudo-categories are designed purely to improve the match
to consumer products, as will be explained below, and are not used in our main analysis.
We selected a sufficiently large and diverse set of pseudo-categories by experimenting and
studying patents held by firms in our sample that produce goods outside of the consumer
goods sector. We add 19 of the pseudo-categories to the existing 400 product categories in
the data. Some examples include “computers,” “car,” “touchscreen”, “heat engine,” “soft-
ware,” and “airplane”. As we did with the original modules, we create word vectors for each
pseudo-module based on the associated set of Wikipedia articles that describe it.

Step 1.e - Word Vectors for Product Categories
The final word vector for product categories (including pseudo-product categories) sim-

ply combines the titles and Wikipedia word vectors (Step 1.b) of all modules that were
clustered together to make a product category (Step 1.c).
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A.4.3 Step 2: Patent Vectors and Similarity Scores

Step 2.1 - Collect Representative Documents for Patents
We use a variety of text fields to construct patent documents, including the title, abstract,

international patent classification description, and the titles of cited patents. We upweight
the title of the patent by a factor of 5 compared to the abstract, because the title has a much
higher signal-to-noise ratio than the other patent text fields. Specifically, a patent’s title
tends to express the main application of the patent, whereas the abstract, description, and
claims contain technical implementation details that are not as relevant for our purposes.
For the same reasons we also upweight the patent classification description by a factor of 3.

Step 2.2 - Create Representative Vectors for Patents
To create the representative vector, we: (1) concatenate all the text; (2) apply parsing

and lemmatizing algorithms (see description below); (3) exclude terms that appear in more
than 80% of documents (excludes words like ”the” and ”and”); (4) and re-weight according
to the tf-idf sublinear transformation (see description above). Constructing representative
documents on the patent side consists of simply concatenating all of the available text into
one document.

The patent corpus is on average shorter than the product category vectors. The average
number of words per patent is 263 with standard deviation of 333 (in terms of unique words,
we get mean 107 and standard deviation 93). The average number of words is about 7,200
per Wikipedia article, with a standard deviation of 6,500 (in terms of distinct words, the
mean is 2,500 and standard deviation of about 2,000). We evaluated if there is a good
overlap in the words used on longer documents to insure that there was not too much
noise. About 50% of the words seen in our product category vectors show up in the patents
somewhere.

Step 2.3 - Computing Similarity Scores Between Patents and Categories
At this point, we have the normalized word vectors for each product category j, fjm,

and the normalized word vectors for each patent p, fpm. Multiplying any two such word
vectors together yields the similarity score between two documents:

sjp =
∑
m∈M

fjmfpm,

whereM, as before, denotes size of a vector, which is the number of terms in the vocabulary.
The similarity is guaranteed to lie in the range [0, 1], with zero corresponding to zero word
overlap and one corresponding to the case in which the documents are identical (or are
multiples of one another). Notice that this vectorization approach (sometimes referred to
as “bag of words”) ignores any information about the order of words or phrases.

Thus, for each patent, we now have similarity metrics for each product category. The
next section describes how we designate the matched product category for each patent.

A.4.4 Step 3: Classifying Patents into Product Categories

The final step of our patent-product matching algorithm consists in using the similar-
ity scores to determine which pairs of patents and products are valid matches. Because
some patents may correspond to certain general production processes—and not directly to
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products—or to products outside the consumer goods sector, we allow for the option that
a patent is not assigned to any product category, or is a “non-match”.

Step 3.1 - Threshold Similarity
We first adjust the algorithm to include a similarity score threshold below which we

believe considering the two documents as similar would be too noisy. We tested different
threshold levels and, in our baseline algorithm, we restrict the set of potential product
categories for each patent p to product categories whose similarity score exceeds 0.025. For
those patents that have less than five product categories satisfying this condition, we include
the set of product categories that have the five highest similarity scores. For each patent,
we denote the set of product categories satisfying these conditions as:

Θp = {j ∈ Ω | sjp > 0.025 ∨ rank(sjp) ≤ 5} (8)

where Ω is the set of all product categories and sjp is the similarity score between patent p
and product category j.

Step 3.2 - Production Condition To further improve the match, we leverage firms’
production information from Nielsen. For each patent, we define the set of potential matches,
Gp, whose elements consist of all product categories in which the patenting firm ever sold a
product, according to our product data.

Gp = {j ∈ Ω | p is patent of firm i ∧
2015∑
t=2006

salesijt > 0}, (9)

where salesijt are the sales of firm i in product category j in year t. Note that this production
condition, will exclude all pseudo-categories and product categories that the firm never
produced from the set of potential matches.53

Step 3.3 - Select the Maximum
Together, the criteria above imply that patent p will be classified as a “non-match” if

none of the product categories satisfy the thresholds and the production conditions:

Θp ∧Gp = ∅

For the patents that have at least one product category satisfying those conditions, we
assign the final patent-product category match j∗p to be a product category with the highest
similarity score:

j∗p = max
j∈Θp∧Gp

sjp (10)

This defines the matching of a patent p to the set of products grouped in the category
j∗p .

53This makes it clear that having pseudo-categories helps to filter out many patents of the firms who
heavily produce non-CPG products. For example, some firms like Toshiba or Samsung produce small
electronics in our data, however they hold large portfolios of patents related to computer hardware or other
high-tech technologies that are not relevant for the consumer products sector that we are analyzing. For
such patents, the set Θp often consists only of pseudo-modules that then are easily filtered out by condition
(9).
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A.5 Robustness and Match Validation

A.5.1 Manual Checks of the Patent-Product Category Matches

We manually checked many patent-to-products matches; Table A1 lists some examples.
The top 100 product categories sorted by their revenue and the largest firms selling in
those categories are shown. For each firm, we then list an example of the highest-similarity
patents in the corresponding product categories and their similarity scores. Comparing the
titles of the patents and product categories, we see that product categories selected by our
algorithm match the content of the patents well.
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Table A1: Top Selling Firms by Categories and their Patents with the Highest Similarity Score

Company Product category Application ID Title of the Patent Similarity
1 Philip Morris USA Cigarette/smoking accessories 13912780 Cigarette and filter sub-assemblies with squeezable flavor 0.544838

capsule and method of manufacture
2 Procter & Gamble Diapers and baby powder 29396475 Absorbent article with a pattern 0.487175
3 Procter & Gamble Laundry detergent 13905161 Laundry detergent composition 0.387514
4 Nikon Camera 29385057 Projector equipped digital camera 0.33897
5 General Electric Lamp 29283361 Lamp 0.427732
6 Coca-Cola USA Soft drink 13816800 Phytase in ready-to-drink soft drink 0.307128
7 Procter & Gamble Toilet 13585921 Method of reducing odor 0.191963
8 Procter & Gamble Paper cup 11897767 Array of paper towel product 0.242879
9 Warner Home Video Photographic film 10428440 Method of distributing multimedia presentation in 0.08106

different format on optical disc
10 Procter & Gamble Sanitary napkin 29465209 Absorbent article 0.204989
11 L’Oreal USA Cosmetics 9987885 Anhydrous and water resistant cosmetic composition 0.305982
12 Procter & Gamble Fabric softener 13070526 Method of making fabric softener 0.41355
13 Kimberly-Clark Facial tissue 10034881 Method of making a high utility tissue 0.198823
14 Unilever USA Soap 10320295 Soap wrapper 0.41769
15 L’Oreal USA Hair coloring 14554789 Hair coloring appliance 0.455061
16 S.C. Johnson & Son Air freshener 29438208 Dispenser 0.496183
17 Kraft Heinz Foods Cheese 11618467 Method and system for making extruded portion of cheese 0.596449
18 Nestle Waters North America Bottle 29434474 Water cooler 0.200115
19 The Hershey Company Candy 9985948 Confectionary product low fat chocolate and 0.282462

chocolate like product and method for making them
20 Procter & Gamble Hair conditioner 12047712 Tool for separating a hair bundle 0.559868
21 Wm. Wrigley Jr. Chewing gum 10453862 Method for making coated chewing gum product with a coating 0.578689

including an aldehyde flavor and a dipeptide sweetener
22 Kimberly-Clark Wet wipe 9965645 Wet wipe dispensing 0.506875
23 Procter & Gamble Razor 29387316 Shaving razor package 0.54803
24 Activision Publishing PC game 11967969 Video game forward compatibility including software patching 0.347854
25 Frito-Lay Potato chip 11777839 Method for reducing the oil content of potato chip 0.521346
26 General Mills Breakfast cereal 29183322 Layered cereal bar having cereal piece included thereon 0.28897
27 Abbott Laboratories Milk 9910094 Powdered human milk fortifier 0.492503
28 Procter & Gamble Toothpaste 11240284 Toothpaste dispenser toothpaste dispensing system and kit 0.388327
29 Procter & Gamble Deodorant 12047430 Deodorant composition and method for making same 0.290906
30 The Minute Maid Company Juice 12940252 Method of juice production apparatus and system 0.31321
31 Colgate-Palmolive Toothbrush 11011605 Oral care implement 0.425624
32 Driscoll Strawberry Associates Fruit 10722055 Strawberry plant named driscoll lanai 0.298149
33 The Duracell Company Battery charger 10042750 Battery cathode 0.262253

Notes: The table presents information on the top 100 product categories according to their revenue. Each row reports the name of the highest-selling firm in a category
together with an application ID and title of the firm’s patent with the highest similarity score in the corresponding product category. The last column reports a similarity
score from matching the patent to the category.
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Company Product category Application ID Title of the Patent Similarity
34 Alcon Laboratories Disinfectant 9765234 Conditioning solution for contact lens care 0.362715
35 Pennzoil-Quaker State Motor oil 10253126 Environmentally friendly lubricant 0.218752
36 Procter & Gamble Oral hygiene 13150392 Method for whitening teeth 0.361255
37 Abbott Laboratories Nutrition 10004360 Pediatric formula and method for providing nutrition and 0.108124

improving tolerance
38 Anheuser-Busch InBev Beer 12734356 Process for preparing a fermented beverage 0.419399
39 Procter & Gamble Shampoo 12040980 Shampoo containing a gel network 0.386299
40 Nabisco Biscuit Cookie 9761322 Novelty cookie product 0.155735
41 Kraft Heinz Foods Coffee 13810612 Coffee product and related process 0.497631
42 Royal Appliance Mfg. Co. Vacuum cleaner 10224483 Vacuum cleaner having hose detachable at nozzle 0.503479
43 Uniden Corp. of America Mobile phone accessories 10268080 Rotating detachable belt clip 0.052147
44 Lexmark International Ink cartridge 9766363 Ink cartridge and method for determining ink volume in 0.505055

said ink cartridge
45 Gerber Products Baby food 10295283 Blended baby food 0.24046
46 The Clorox Company Hard-surface cleaner 12141583 Low residue cleaning solution comprising a c-to-c 0.195491

alkylpolyglucoside and glycerol
47 The Clorox Company Bleach 14724349 Intercalated bleach composition related method of 0.390043

manufacture and use
48 L’Oreal USA Cosmetic mascara 10759614 Two step mascara 0.359273
49 Lifescan Stool test 10179064 Reagent test strip with alignment notch 0.123588
50 Playtex Products Tampon 10834386 Tampon assembly having shaped pledget 0.558883
51 Kimberly-Clark Urinary tract infection 12680575 Management of urinary incontinence in female 0.400734
52 Procter & Gamble Microfiber 11016522 Rotary spinning process for forming hydroxyl 0.113136

polymercontaining fiber
53 Sandisk Corporation Floppy disk 10772789 Disk acceleration using first and second storage device 0.232516
54 Procter & Gamble Acne 10633742 hptp-beta a target in treatment of angiogenesis mediated 0.026864

disorder
55 Kraft Heinz Foods Pasta 29220156 Spider shaped pasta 0.643155
56 L’Oreal USA Eye liner 14368230 Method for delivering cosmetic advice 0.200779
57 Lexmark International Printer (computing) 11766807 Hand held printer configuration 0.431107
58 Dreyer’s Grand Ice Cream Ice cream 10213212 Apparatus for forming an extruded ice cream dessert with 0.411786

inclusion
59 Imation Corp. Compact cassette 9882669 High speed tape packing 0.240291
60 Conagra Brands Canning 12814296 Method and apparatus for smoking food product 0.144703
61 Nestle Purina PetCare Dog food 29212029 Pet food 0.313367
62 Fort James Corporation Disposable food packaging 29178752 Disposable plate 0.173866
63 L’Oreal USA Face powder 9847388 Use of fiber in a care composition or a makeup composition 0.139978

to make the skin matte
64 Conair Corporation Hair styling tool 29285527 Curling iron 0.124045
65 Johnson & Johnson Adhesive bandage 11877794 Adhesive bandage and a process for manufacturing an 0.229017

adhesive bandage
66 Unilever USA Shower gel 10242390 Viscoelastic cleansing gel with micellar surfactant solution 0.121894
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Company Product category Application ID Title of the Patent Similarity
67 Procter & Gamble Dishwasher 11348667 Method of cleaning a washing machine or a dishwasher 0.296332
68 Pepsi-Cola North America Tea 12147245 Coumalic acid to inhibit nonenzymatic browning in tea 0.483404
69 General Mills Sweet roll 14340046 Method of forming dough composition 0.471588
70 Alcon Laboratories Eye drop 9919301 Use of certain isoquinolinesulfonyl compound for the 0.030695

treatment of glaucoma and ocular ischemia
71 Tyson Foods Frozen food 13245589 Big poultry cutup method 0.311296
72 Pactiv Corp Zipper storage bag 10289641 Reclosable bag having tamperevident member removable 0.224593

from the bag along a line of weakness located below the
bag zipper

73 Lipton Margarine 9880200 Preparation of a blend of triglyceride 0.317454
74 Handi-Foil Corporation Kitchen utensil 29418653 Pan with handle 0.167337
75 Hartz Mountain Pet 10647660 Pet chew and method of providing dental care to pet 0.345158
76 Acco Brands USA Notebook 11454292 Notebook computer folding ergonomic pad 0.130091
77 Johnson & Johnson Lotion 12340858 Structured lotion 0.230563
78 Glaxosmithkline Anti-inflammatory drug 11355808 Use of Immune cell specific conjugate for treatment of 0.108521

inflammatory disease of gastrointestinal tract
79 Kraft Heinz Foods Processed cheese 10207591 Processed cheese made with soy 0.43164
80 Fort James Corporation Napkin 29215802 Tabletop napkin dispenser 0.263922
81 Omron Healthcare Sphygmomanometer 29344018 Sphygmomanometer 0.463227
82 General Mills Cracker (food) 10172401 Advertising quadrate carrier assembly with premium cradle 0.02869
83 BIC USA Pen 29138586 Writing instrument 0.314765
84 The Libman Company Mop 29298481 Mop 0.426008
85 Frito-Lay Snack 10893425 Method and apparatus for layering seasoning 0.12532
86 Fresh Express Incorporated Salad 29362982 Paper bag with a transparent vertical window for salad 0.241787

ingredient
87 Procter & Gamble Shaving cream 11110034 Shaving system with energy imparting device 0.322912
88 Nestle Purina PetCare Litter box 29228923 Cat litter box 0.567078
89 Frito-Lay Corn chip 9998661 Apparatus and method for making stackable tortilla chip 0.15851
90 Elizabeth Arden Eau de toilette 29414481 Perfume bottle 0.241875
91 Bimbo Bakeries USA Bread 13618124 Method and system for the preservation and regeneration of 0.263577

pre-baked bread
92 E & J Gallo Winery Wine 10970490 Method and apparatus for managing product planning and 0.215571

marketing
93 BIC USA Lighter 11221295 Multi-mode lighter 0.369379
94 Sara Lee Foods Sausage 10014160 Split sausage and method and apparatus for producing split 0.520147

sausage
95 Frito-Lay Mixed nuts 11553694 Method for making a cubed nut cluster 0.158285
96 Kiss Nail Products Manicure 12924589 Artificial nail and method of forming same 0.361627
97 Frito-Lay Dipping sauce 10109398 Apparatus and method for improving the dimensional quality 0.1273

of direct expanded food product having complex shape
98 Kraft Heinz Foods Bacon 9799985 Bacon chip and patty 0.556922
99 Emerson Radio Corp. Microwave oven 29149130 Protective cage and radio combination 0.0148
100 Procter & Gamble Dentures 13043649 Denture adhesive composition 0.467318
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A.5.2 External Validation. Virtual Patent Markings

One of the important validation exercises for the patent-to-products match relies on external
information. We use information from virtual patent markings which were introduced with
the 2011 Leahy-Smith America Invents Act. Under that act, firms may give notice to the
public that their product is patented. Recently, de Rassenfosse (2018) provides estimates of
the adoption rate of virtual markings and studies factors that account for the likelihood of
adoption. Overall, the adoption rate is relatively small and varies systematically with firm
size. Indeed, our online searches showed that only a handful of the CPG firms in our sample
used virtual patent markings.54 This means that we cannot use patent markings to match
patents to products for all firms in our data set. We can, however, use them as a useful
validation exercise to compare the marking’s product-patent matches with our algorithm.

To this end, we selected Procter & Gamble (P&G) and Kimberly-Clark (KC) for our
validation exercise, as these are among the largest firms in our sample.55 We start by
collecting the product-patent links from the websites. In most cases, the markings are
associated with brands and not particular products. Hence, an important challenge lies
in linking the listed brands on the websites with the brands in Nielsen. We use exact
name matches, non-exact name matching, and extensive manual matching to determine the
closest NielsenIQ brand equivalents. We then proceed to identify the product categories
that include products of those brands. This process allows us to obtain a mapping between
patents and product categories that solely comes from the markings listed by P&G and
KC.(311 and 87, respectively).56

For each patent, we then compare the matched product categories in our patents-to-
product data set with the product categories obtained from the virtual markings listed by
P&G and KC. We begin by exploring similarity scores. For each patent-product category
pair from the virtual markings, we obtain a similarity rank that our algorithm assigns to
that product category. For example, when the rank value is one, the product category in the
virtual markings corresponds to our algorithm’s highest top-1 similarity category. When
it is two, the match was very close to the category from the markings, and so on, thus
providing a notion of closeness between the algorithm-based and marking-based matches.
The first plot in Figure A.5.2 plots the distribution of these ranks. The algorithm-based
preferred (highest-similarity) product categories coincide most of the time with the patent-
product category mapping from the virtual markings. For 69% of patents, and 79% of
patents conditional on a match, the virtual marking product categories are ranked as one
or two based on the similarity scores.57

54Even if firms use virtual patent markings, they report only a selected set of products and just a small
fraction of patent portfolio they hold.

55We also found virtual markings are Clorox and Smuckers. However, because the products reported on
their websites could not be mapped cleanly to our product categories, we did not analyze them.

56P&G and KC hold many more patents that are not included in the virtual markings. We also had to
exclude patents listed under brands we could not match cleanly to the NielsenIQ data.

57Note that we cannot compare these numbers to 100% given that the ranking is unavoidably affected by
some noise that comes from our manual mapping of the product listings on the websites to the notion of
product categories in our data.
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Figure A1: Virtual Patent Markings. P&G and KC Case Study
Distribution of similarity ranks for virtual markings Distribution of similarity scores
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Notes: We use patent markings from P&G and KC. For each patent-product category pair from the virtual markings, we obtain
a similarity rank that our algorithm assigned to this product category and show the distribution of ranks in the first graph.
When the rank is one, the product category in the virtual marking corresponds to our algorithm’s highest top-1 similarity
category. The second graph shows the distribution of similarity scores for rank-1 and higher-rank product categories.

Another way to visualize the accuracy of the match is to examine the distribution of
similarities conditioning on whether the match was the top rank-1 (coinciding with the
category from virtual markings) or a lower rank. If these two distributions were very similar,
this would mean that even if the match is accurate, it is not very robust, as small elements
of noise or bias could change the results of the match. In fact, as shown in the second plot of
Figure A.5.2, these two distributions are quite distinct, with the rank-1-match distribution
weighted towards the right, meaning the results of the match should be rather robust.

A.5.3 Robustness of the Match. Patent Similarity with Top vs Lower-Rank
Categories

As discussed, for our match, we pick product categories which have the highest similarity
scores with patents. That is, we first pick the top five categories that have the highest
similarity values with patents, and then we assign the top-similarity category conditional
on a firm producing a product in that category. However, if the similarity scores for different
categories are too close (either because the algorithm is not able to pick up the distinctions
between documents or the categories are too finely defined) so that the algorithm cannot
clearly differentiate between them, our choice of the top-rank match would not be robust
to small perturbations of the algorithm or category clustering. To explore this issue, we
plot the distribution of similarity scores of patents with different-rank product categories
in Figure A2. The rank-1 category is the category with the highest similarity score for a
patent, and so on. We find that top-ranked categories have substantially different (shifted
to the right) distributions than slightly lower-ranked categories, thus providing evidence of
the robustness of the match. The patents’ mean similarity score for rank-1 categories is 3
times higher than the mean similarity score for rank-5 categories.
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Figure A2: Similarity Distribution by Rank
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Notes: The figure shows similarity scores distribution of patents for different-rank product categories. Rank-
1, Rank-3, and Rank-5 show similarities with categories ranked as the highest, rank-3, and rank-5 similarity
categories.

A.5.4 Actual vs Placebo Match of Patents to Product Categories

We next verify that by grouping patents into distinct categories, we are indeed carving
out well-defined neighborhoods in the technological space. We again employ word vectors
to assess document similarity, but this time between pairs of patent texts. Specifically,
we look at the distribution of similarity scores between pairs of patents classified into the
same product category and compare this distribution to that of pairs of patents selected
at random from the entire set of patents held by CPG firms. The similarity distribution
based on this match looks very different from our placebo distribution as seen in Figure A3.
The patents’ mean similarity score is 5.6 times higher if patents are assigned to the same
product categories. In ordinal terms, the median within-category similarity lies at the 93rd
percentile in the overall distribution.
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Figure A3: Distribution of Pairwise Patent Similarities
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Notes: The green density curve shows the distribution of similarities between pairs of patents classified into the same product
category. The blue curve shows the distribution of similarities between randomly drawn pairs of patents amongst all those
owned by NielsenIQ firms.

A.5.5 Validating Non-matches. CPG-only Firms and Product-Related Patents

Our patents-to-products dataset at the firm × product category level would ideally filter out
patents that are not related to the products in our data. Hence, correct non-matches would
arise for the following two main reasons. First, a patent may relate to other non-CPG goods
that the firm may be producing, which are not covered in our sample; and second, a patent
may be a general process/method patent that does not relate to the products directly. We
examine these possibilities.

Panel (a) in Figure A.5.5 shows the share of patents that match to firms’ product cat-
egories for a sample of firms that we can accurately identify as CPG-only firms and not
CPG-only firms (see Appendix A.1 for details). Indeed, 92% of patents held by CPG-only
firms match, while only 36% of patents of not CPG-only firms match to our product cat-
egories. This result reassures us that our algorithm indeed picks the correct matches. As
seen from Panel (b), the similarity scores for CPG-only firm patents are also significantly
higher.
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Figure A4: Match Validation. CPG-only Firms and Product-Related Patents
(a) Share of patents matching to firms’ product categories
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(b) Rank-1 similarity distribution for patents
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Notes: Panel (a) shows the share of patents that match with product categories in which firms ever sell a product. The left
figure compares patents of the CPG-only and non-CPG-only firms, while the right figure compares process, product-related,
and design patents. CPG-only firms and non-CPG-only firms refer to the sample of firms defined in Appendix Section A.1.
Process and product-related patents are defined in Appendix Section A.2. Panel (b) displays the similarity score distribution
for patents of CPG-only and non-CPG-only firms on the left and of process, product-related, and design patents on the right.

Panel (a) also demonstrates that the share of patents that are matched is higher if the
patent is more likely to be directly related to products. Using our proxies for process- and
product-related patents (see Appendix A.2 for details) and considering design patents as
most directly related to products, we plot the share of all process, product, and design
patents that are matched. The probability of a match increases along with the likelihood
of a patent being related to a product, which is reassuring. Panel (b) also confirms that
the similarity scores of product-related patents are much higher than the similarity scores
of process patents.
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A.6 Patents and Products in CPG. Examples.

Figure A5: Example: Kiinde LLC

(a) Patent application in 2013 (b) Direct pump adapters intro-
duced in 2014

Figure A6: Example: Nephron Pharma

(a) Patent application in 2012 (b) Refill vials in 2012
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Figure A7: Example: Beyond Meat Inc.

(a) Patent application in 2014 (b) The first simulated beef prod-
uct in 2014

Figure A8: Example: Coca Cola Inc.

(a) Patent application in 2005 (b) The first sugar-free Coke Zero
in 2005
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A.7 Measuring Product Innovation

We use four measures of quality improvements brought by new products: a novelty index
whose weights are the contributions of each attribute to the product price (baseline q); a
novelty index that equally weights each attribute (q1); a novelty index whose weights reflect
the total sales accounted by each attribute (q2); and a quality measure that weights each
product by its residual demand (q3). These measures capture different dimensions of quality.
The first three measures (baseline q, q1 and q2) explicitly capture the novelty of a new
product by using information about its attributes. The second type of measure (q3) captures
any residual demand (or appeal), which can arise from vertical quality differentiation or
subjective differences in consumer taste. We next describe the construction of the novelty-
based measures and residual demand in detail, followed by a discussion of the descriptive
statistics for these measures.

A.7.1 Novelty-Based Measures

Overview. — We define a product u in product category j as a vector of characteristics
V j
u =

[
vju1, v

j
u2, .., v

j
uAj

]
, where Aj denotes the number of attributes (e.g. color, formula,

size) observed in product category j and vjia represents a characteristic within an attribute
(e.g. blue, red, green).58 Let Ωj

t contain the set of product characteristics for each product
ever sold in product category j at time t, then the novelty index of product u in product
category j, launched at time t is defined as follows:

qu ≡ Novelty
(j)
u(t) =

Aj∑
a=1

ωja1[vjua /∈ Ωj
t ],

where ωja represents the category-specific weight given to new characteristics within attribute
a. The measures q, q1 and q2 only differ in the way we compute their ωja.

For q, we estimate ωja using hedonic price regressions in order to be able to quantify the
importance of each attribute within a product category. The section below provides the
details on the hedonic methods used.

The simplest measure q1, simply weights each attribute equally. For example, if a new
product within the “pain remedies-headache” category enters the market with a flavor and
formula that has never been sold before, its novelty index is (1 + 1)/Asoft drinks = 2/10. Note
that comparing the novelty index of different products across distinct categories depends
not only on the number of new attributes of each product, but also on the total amount of
observable characteristics the NielsenIQ data provides for each category.

Measure q2 is very similar to q. We use weights generated by hedonic regressions and
scale them by observed quantities to get to the sales-based weights for each attribute. In
this case, we also normalize the weights so that all weights within a product category add
up to one.

58We refer to product categories for simplicity of notation. Our analysis is conducted first at the product
module level (as defined by NielsenIQ RMS data) and then aggregated at the firm level (firm match) or
firm × product category level (patents-to=products match).

A23



Hedonic Regression Weights. — We estimate product category weights ωja for our
measure q using hedonic methods. In particular, we estimate a linear characteristics model
using the time-dummy method. The time-dummy method works by pooling data across
products and periods and regressing prices on a set of product characteristics and a se-
quence of time-dummies. Since the regression is run over data which is pooled across time
periods, any product characteristic which is held by at least one product in some period can
be included even if it is not present in all periods. The estimated regression coefficients rep-
resent the shadow price for each of the included characteristics. To implement this method,
we estimate the following equation by non-negative least squares:

put =
∑
c

πcacu + λt + εut, (11)

where u denotes the product, c is the characteristic, and t is the time period (years). acu is
an indicator that equals one if a given characteristic c is present in product u. Recall that
each attribute a (e.g color) has distinct characteristics c (e.g. blue, red). The estimated
regression coefficients, πc, represent the shadow price for each of the included characteristics.
We use non-negative least squares so that the shadow prices are weakly positive. Lastly, λt
represents time effects.

Using this method, we obtain a correlation of approximately 0.91 between the actual
price and

∑
c π

c.59 The weight ωja is the average contribution of the characteristics within

each attribute to the price normalized so that
∑Aj

a ωja = 1; these are the weights used in
our baseline novelty index.

A.7.2 Residual Demand Measure

An alternative way of measuring the degree of product innovation brought by new products
to the market is to weight them by their implied quality (or residual demand) using a struc-
tural specification of their demand function. To derive an implied quality for each product,
we follow Hottman et al. (2016) and Argente et al. (2018) and use a nested constant elas-
ticity of substitution (CES) utility system that allows the elasticity of substitution between
varieties within a firm to differ from the elasticity of substitution between varieties supplied
by different firms. The model features oligopolistic competition with a finite number of het-
erogeneous multi-product firms, where the output of each category is described by a nested
CES structure over a finite number of products within a finite number of firms (j is omitted
for simplicity of notation)

y =

 M∑
i=1

(
Ni∑
u=1

(γuiyui)
σ−1
σ

) σ
σ−1

η−1
η


η
η−1

59These dummies for characteristics seem to explain differences in prices well. The variance of linear
combination of the fixed effects of the attributes (excluding time fixed-effects) relative to the variance of
the prices is 0.827.
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where σ is the elasticity of substitution across products within the same firm, η is the
elasticity of substitution across firms, and γui and yui are the implied quality and quantity of
product u produced by firm i, respectively. Using the first order conditions of the consumer
we can write the demand for product u produced by firm i as follows:

yui = (γui)
σ−1

(
pui
pi

)−σ (
pi
p

)−η
Y

p
, pi =

(
Ni∑
u=1

(
pui
γui

)1−σ
) 1

1−σ

, (12)

where the demand for the product depends on the implied quality γui and price pui of the
product, as well as the firm’s price index pi, the category’s price index p, and the size of the
category Y . Conditional on observing the prices and quantities from the data and obtaining
estimates for σ and η, we recover γuijt as a structural residual that ensures that the model
replicates the observed data up to a normalization.60 We normalize the implied quality
so that its geometric mean within each category and time period equals one. The key
advantage of this normalization is that we can compare a product’s implied quality within
the firm and across firms within a category and time period. Using this normalization and
equation 12, we obtain the product implied quality as:

γui =

(
sui × si∏

u,j(sui × si)
1
M

) 1
σ−1
(

si∏
u,j(si)

1
M

) σ−η
(1−η)(1−σ)

(
pui∏

u,j(pui)
1
M

)
,

where sui and si are the share of sales of product u and the share of sales of firm i, re-
spectively, and M denotes the total number of products sold in a category. The estimation
procedure for σ and η follows Broda and Weinstein (2010) and Feenstra (1994). The es-
timation has two steps. In the first step, we estimate the elasticity of substitution across
products within firms using product shares, product prices, and firm shares using a GMM
procedure. The key identification assumption is that demand and supply shocks at the
product level are uncorrelated once we control for firm-time specific effects. In the second
step, we use these estimates for products to estimate the elasticity of substitution across
firms for each category using the procedure developed by Hottman et al. (2016). We use
the estimates from Argente et al. (2018).

To capture the incremental effect of new products on the residual demand of the firms,
our measure of quality improvement q3 is the geometric average of the implied quality of
the new products relative to the geometric average of all products sold by the firm.

A.7.3 Descriptive Statistics

Novelty Indices Across Product Categories. — Although in our main analyses we
only consider within category variation in novelty, Figure A9 shows the degree of hetero-
geneity in novelty index q across different product categories. The quality measure q has
a correlation of 0.93 with the equal-weights measure q1. Conditional on having an equal-
weights index larger than zero, the correlation is 0.79. “Juices, Drinks-frozen” has a high
novelty index mainly due to the prevalence of new brands and new flavors over our sample

60Normalization is required because the utility function is homogeneous of degree 1 in the implied quality.
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period. Over our sample period, there are more than 50 new brands and 67 new flavors
in this category, which can be explained by recent trends in this category to increase the
nutrients, reduce the sugar content, and to create products according to the consumer’s
lifestyles. The novelty index for “Baking Mixes” and “Flour” can be explained by the surge
in home-based baking observed in recent years, which led to more than one thousand new
brands in these categories. Only in “Baking Mixes” we observed more than 600 new fla-
vors during our sample period. These categories have also seen significant innovations in
packaging. An example is stand-up pouches, which use less plastic, increase the shelf life of
products, and reduce the likelihood they are damaged during shipping.

Figure A10 shows some examples of products with high and low equal-weights novelty
q1 in our data. For example, the product Asthmanefrin Inhalation Solution - Liquid Refill
is part of the group Medications/Remedies/Health Aids. When it was introduced in the
market, this product had six of the eight attributes that we observe in our data for that
product group, it was a new brand, launched by a new firm, it was a liquid, bronchilator
refill. As a results, its equal-weights novelty index is 6/8=0.75.

Figure A9: Novelty Index (Baseline q)

.

0 .1 .2 .3 .4
Newness Index (Hedonic) by Category

ELECTRONICS, RECORDS, TAPES
PHOTOGRAPHIC SUPPLIES

PAPER PRODUCTS
GLASSWARE, TABLEWARE

GROOMING AIDS
DISPOSABLE DIAPERS

LIGHT BULBS, ELECTRIC GOODS
SANITARY PROTECTION

STATIONERY, SCHOOL SUPPLIES
COOKWARE

HARDWARE, TOOLS
TOBACCO & ACCESSORIES
CARBONATED BEVERAGES

KITCHEN GADGETS
EGGS

DEODORANT
BABY NEEDS

PET CARE
NUTS

BOOKS AND MAGAZINES
MEAN
SOUP

CRACKERS
PIZZA/SNACKS/HORS DOEURVES-FRZN

PUDDING, DESSERTS-DAIRY
BEER

DESSERTS, GELATINS, SYRUP
VEGETABLES - CANNED

JAMS, JELLIES, SPREADS
PREPARED FOOD-READY-TO-SERVE

SUGAR, SWEETENERS
FRUIT - CANNED

SPICES, SEASONING, EXTRACTS
CHARCOAL, LOGS, ACCESSORIES

PREPARED FOODS-FROZEN
CONDIMENTS, GRAVIES, AND SAUCES

BREAKFAST FOODS-FROZEN
FLOUR

BAKED GOODS-FROZEN
BAKING MIXES

JUICES, DRINKS-FROZEN

Note: Total number of categories (groups) is 117. Only top and bottom reported.

Notes: The figure presents the average novelty index for a sample of product groups in our data. In particular, it shows the
mean novelty index by groups along with the top and bottom groups as ranked by this measure. We compute the novelty
index for each product using equation A.7.1. We average across products and product modules to the category level. We
focus on cohorts from 2006Q3 to 2014Q4 and on modules with at least 20 barcodes.
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Figure A10: Novelty Index: Examples

(a) High-Novelty Products (b) Low-Novelty Products

Correlation with Product and Firm Performance. — Our baseline measure of
quality q explicitly captures the novelty of a new product by using information about its
attributes. This use of product attributes offers important advantages in the context of
our paper. Patents are granted on the basis of novelty, and thus using a quality-adjusted
measure of product introduction that explicitly accounts for new features of the product
should help to align the notion of innovation on patents and products side. However, new
features of the product may not affect the market at all if they are not valued by customers.
Our baseline measure q partially accounts for this potential concern by weighting any new
characteristic according to its shadow price using hedonic regressions. In addition, Table
A2 shows that our baseline measure is correlated with product and firm outcomes, and thus
may be capturing some vertical quality differentiation or subjective differences in consumer
taste.
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Table A2: Novelty Measure: Correlation with Firm Outcomes

(1) (2) (3) (4)
Growth Rate Growth Rate New Duration 4q Duration 16q

Novelty(t) 0.0815** 1.6463*** 0.1762*** 0.1879***
(0.032) (0.063) (0.014) (0.024)

Product Introduction(t) 1.0351*** 2.0674*** 0.0855*** 0.0964***
(0.011) (0.019) (0.004) (0.007)

Observations 408,161 241,540 96,942 53,611
R-squared 0.367 0.363 0.478 0.573
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows the correlation between our measure of novelty q and several firm outcomes. Growth rate (DH) is the
revenue growth of the firm estimated as in Davis and Haltiwanger (1992), i.e. 2(yt−yt−1/(yt+yt−1). GrowthrateNew (DH)
is the revenue growth of new products. Duration 4q and Duration 16q are the share of products introduced a time t that last
in the market more than 4 or 16 quarters respectively. log N is log number of products introduced using the inverse hyperbolic
sine transformation. Standard errors are clustered at firm × category.
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B Additional Empirical Results

Figure B1: Main Summary Statistics for Food and Non-Food Categories
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Product Introduction Rate Share of Firms with Patent
Quality-Adjusted Introduction Rate Patents per New Products

Notes: The figure presents summary statistics for food and non-food product categories in Nielsen. Using the patents-
to-products match, we compute the average product introduction rate, quality-adjusted introduction rate, number of new
products, and patent applications at the firm × category level (patent statistics are winsorized at the top 5%). With these, we
compute average product introduction rate, quality-adjusted introduction rate, patents per new products and share of firms
with patents at the product category-level. The plot shows these statistics by aggregating them within food and non-food
product category (weighting by the total revenue of each product category).
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Table B1: Product Introduction and Patenting, Logs

Log Product Introduction Log Product Introduction
Quality-Adjusted

(1) (2) (3) (4) (5) (6)
Log patents(t-1) 0.0380*** 0.0189***

(0.010) (0.005)
Log patents granted(t-1) 0.0405*** 0.0192***

(0.011) (0.005)
Log patents citations adj.(t-1) 0.0249*** 0.0139***

(0.007) (0.003)

Observations 409,641 409,641 407,891 409,641 409,641 407,891
R-squared 0.692 0.692 0.690 0.623 0.623 0.619
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data. Product and quality-adjusted product introduction rates
are defined as the number of new products or quality-adjusted new products over a total number of products in firm × category
× year. Product quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of patent applications
in a particular category-year over the total number of cumulative patents in that category-year; Patents granted is the ratio
of the firm’s number of granted patent applications in a particular category-year over the total number of cumulative patents
in that category-year; Patents citation-adjusted is the ratio of the firm’s number of citations-weighted granted patents in a
particular category-year over the total number of citation-weighted granted patents in that category-year. Observations at the
firm × category × year level with zero patents are included in the regression. Standard errors are clustered at the firm ×
category level.
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Table B2: Product Innovation and Patenting: Food and Non-Food Categories

Product Introduction Product Introduction
Quality-Adjusted

(1) (2) (3) (4) (5) (6)
Panel 1 - Food

Patents(t-1) 0.0293** 0.0089**
(0.014) (0.004)

Patents granted(t-1) 0.0416** 0.0100
(0.020) (0.006)

Patents citations adj.(t-1) 0.0402 0.0108
(0.027) (0.008)

Observations 259,799 259,799 259,468 259,799 259,799 259,468
R-squared 0.328 0.328 0.328 0.307 0.307 0.307
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Panel 2 - Non-Food
Patents(t-1) 0.0506*** 0.0208***

(0.009) (0.003)
Patents granted(t-1) 0.0526*** 0.0263***

(0.012) (0.005)
Patents citations adj.(t-1) 0.0608*** 0.0309***

(0.015) (0.006)

Observations 149,842 149,842 149,025 149,842 149,842 149,025
R-squared 0.382 0.382 0.383 0.295 0.295 0.296
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data. Product and quality-adjusted product introduction rates
are defined as the number of new products or quality-adjusted new products over a total number of products in firm × category
× year. Product quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of patent applications
in a particular category-year over the total number of cumulative patents in that category-year; Patents granted is the ratio
of the firm’s number of granted patent applications in a particular category-year over the total number of cumulative patents
in that category-year; Patents citation-adjusted is the ratio of the firm’s number of citations-weighted granted patents in a
particular category-year over the total number of citation-weighted granted patents in that category-year. The results for food
include the departments of dry grocery, frozen foods, dairy, deli, packaged meat, fresh produce and alcoholic beverages; and
for non-food include health and beauty, non-food grocery, and general merchandise. Standard errors are clustered at the firm
× category level.
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Table B3: Product Introduction and Patenting by Size: Quality Measures

(1) (2) (3) (4) (5) (6)
Product Introduction Quality-Adjusted

q1 Novelty Simple q2 Novelty Sales q3 Residual Demand

Patents(t-1) 0.0117*** 0.0356*** 0.0139*** 0.0362*** 0.0115 0.1680*
(0.002) (0.006) (0.002) (0.008) (0.016) (0.096)

Size(t) 0.0002*** 0.0004*** 0.0073***
(0.000) (0.000) (0.002)

Patents(t-1) x Size(t) -0.0021*** -0.0020*** -0.0109*
(0.000) (0.001) (0.006)

Observations 409,641 409,641 409,641 409,641 83,329 83,329
R-squared 0.263 0.264 0.262 0.262 0.324 0.324
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the quality-adjusted product introduction rates as a function of the patenting rates,
using firm × category × year data, similar to Table 4 but introducing size (firm sales in category-year) and size interaction
with patenting. Quality-adjusted product introduction rates are defined as the number of new products or quality-adjusted
new products over a total number of products in a firm × category × year. Quality is defined as follows: q1 is a quality
measure that weighs each attribute equally, q2 is a weighted quality measure using weights that reflect “shadow sales”, and q3
is a measure of residual demand taken from Hottman et al. (2016). This measure does not use information about the degree of
novelty of a product and instead captures the appeal of new products relative to other products sold in the market, under some
functional-form assumptions. Patents is the ratio of the firm’s number of patent applications in a particular category-year
over the total number of cumulative patents in that category-year. Observations at the firm × category × year level with zero
patents are included in the regression. Standard errors are clustered at the firm × category level.
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Table B4: Product Introduction and Patenting: International Patents

(1) (2) (3) (4) (5) (6)
Product Introduction Product Introduction

Quality-Adjusted

Patent Rate(t-1) 0.0446*** 0.0864*** 0.0867*** 0.0174*** 0.0460*** 0.0460***
(0.008) (0.023) (0.023) (0.003) (0.008) (0.008)

Size(t) 0.0102*** 0.0102*** 0.0012*** 0.0012***
(0.000) (0.000) (0.000) (0.000)

Patent Rate(t-1) x Size(t) -0.0037** -0.0038** -0.0025*** -0.0025***
(0.002) (0.002) (0.001) (0.001)

Share of Int. Patent 0.0068 0.0063 -0.0119 0.0013 0.0014 0.0025
(0.006) (0.006) (0.019) (0.002) (0.002) (0.006)

Share of Int. x Size(t) 0.0014 -0.0001
(0.001) (0.000)

Observations 409,641 409,641 409,641 409,641 409,641 409,641
R-squared 0.357 0.362 0.362 0.302 0.303 0.303
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data, similar to Table 4 but introducing size (firm sales in
category-year), size interaction with patenting, and controlling for the share of international patents. Product and quality-
adjusted product introduction rates are defined as the number of new products or quality-adjusted new products over the total
number of products in the firm × category × year. Product quality measures are defined in Section 2.3.1. Patents is the ratio
of the firm’s number of patent applications in a particular category-year over the total number of cumulative patents in that
category-year. A USPTO patent is classified as international if the firm files for protection in at least one country outside the
United States. Observations at the firm × category × year level with zero patents are included in the regression. Standard
errors are clustered at the firm × category level.
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Table B5: Sales, Patents, and Product Introduction: Quantity and Prices

(1) (2) (3) (4)
Log Quantity Log Quantity Log Price Log Price

Log Cum Patents(t-1) 0.069*** 0.072*** 0.016** 0.017***
(0.022) (0.022) (0.007) (0.007)

Log New Products 0.073*** 0.022***
(0.004) (0.001)

Log Q-new Products 0.099*** 0.035***
(0.009) (0.002)

Observations 407,937 407,937 407,937 407,937
R-squared 0.855 0.855 0.921 0.921
Time-Category Y Y Y Y
Firm-Category Y Y Y Y
Controls Y Y Y Y

Notes: The table repeats columns (3) and (4) of Table 7 for quantities and prices. Columns (1)-(2) report regressions for
log quantity at time t, controlling for lagged log quantity; columns (3)-(4) do the same for log price. Since the baseline unit
of analysis is a product category, which aggregates multiple NielsenIQ modules, and often the quantities and prices are not
directly comparable across modules within a category, we normalize each product’s quantity and price relative to the median
within its module, then compute the firm-level log quantity and log price as the average of these normalized (logged) values
within each category.
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Table B6: Sales, Patents, and Product Introduction: Flow of Patents

(1) (2) (3) (4) (5) (6)
Log Sales (t) Log Sales (t)

Log Patents(t-1) 0.044** 0.029 0.033* -0.136** -0.074
(0.020) (0.019) (0.019) (0.069) (0.074)

Log New Products 0.517*** 0.517*** 2.024***
(0.006) (0.006) (0.023)

Log Q-new Products 0.760*** 3.452***
(0.013) (0.054)

Log Patents(t-1) × Size(t-1) 0.013*** 0.009*
(0.005) (0.005)

Log New Products × Size(t-1) -0.130***
(0.002)

Log Q-new Products × Size(t-1) -0.219***
(0.004)

Observations 408,161 408,161 408,161 408,161 408,161 408,161
R-squared 0.900 0.905 0.905 0.902 0.910 0.905
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y
Log Sales(t-1) Y Y Y Y Y Y

Notes: The table replicates the Table 7, but using Log Patents(t-1)—log number of patent applications at t-1, instead of the
stock of patents. The table shows regressions of log sales on patent stock in the previous period and the product introduction,
conditional on firm sales in the previous period, using firm × category × year data. Baseline regression specifications in (3) and
(4) are based on equation (3). All regressions additionally control for time-category and firm-category fixed effects. Standard
errors are clustered at the firm × category level.
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Table B7: Sales on Patents, and Product Introduction over Time

Log Sales (t)
2006-2010 2011-2015

Log Cum Patents(t-1) 0.026 0.132 -0.188** -0.092
(0.139) (0.145) (0.083) (0.090)

Log New Products 1.692*** 1.874***
(0.036) (0.031)

Log Q-new Products 2.606*** 2.997***
(0.080) (0.068)

Log Cum Patents(t-1) × Size(t-1) 0.012 0.006 0.022*** 0.016***
(0.009) (0.010) (0.005) (0.006)

Log New Products × Size(t-1) -0.114*** -0.123***
(0.003) (0.002)

Log Q-new Products × Size(t-1) -0.171*** -0.192***
(0.006) (0.005)

Observations 175,566 175,566 226,843 226,843
R-squared 0.931 0.929 0.928 0.925
Time-Category Y Y Y Y
Firm-Category Y Y Y Y
Log Sales(t-1) Y Y Y Y

Notes: The table shows regressions of log sales on patent stock in the previous period and the product introduction, conditional
on firm sales in the previous period, using firm × category × year data. Log Cum Patents(t-1) is the log number of patent
applications by time t-1–net of depreciation, and the Log New Products (Q-new Products) is the number of new products
(quality-adjusted new products) introduced at time t. To account for zeros, logs are calculated using the hyperbolic sine
transformation. Baseline regression specifications in (3) and (4) are based on equation (3). The last two columns interact
patent stock and product introduction variables with firm log size (sales) in the previous period. All regressions additionally
control for time-category and firm-category fixed effects. Standard errors are clustered at the firm × category level.

B8



Figure B2: Product Innovation Rate by Size: Alternative Quality Adjustments
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Notes: The figure plots the quality-adjusted innovation rates over firm size percentiles for different measures of quality. For
each firm × product category, we compute average sales and define firm size percentiles based on the average sales distribution
in that product category. Each panel plots the average value of the respective variables in each percentile. For each firm ×
product category, we compute their average sales and quality-adjusted product entry rates using our benchmark and three
alternative quality measures—q1, q2, q3. By construction, q, q1, and q3 lie between 0 and 1. q3 is plotted on a different axis
because its mean is equal to 1, as it is the geometric average of the implied quality of the new products relative to the geometric
average of all products sold by the firm. Each dot/triangle plots the averages after weighting different product categories by
their importance in the whole sector, as measured by their sales share.
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Figure B3: Patenting and Firm Size

0

.1

.2

.3

.4

.5

 

25 50 75 100
Firm Size Percentile

(a) Probability of patent application

2

4

6

8

 

25 50 75 100
Firm Size Percentile

(b) Number of patent applications (log)

Notes: This figure plots the relationship between patenting and firm size, defined by sales. For each firm × product category,
we compute average sales and define firm size percentiles based on the average sales distribution in that product category.
Each panel plots the average value of the respective variables in each percentile. For each firm × product category, we compute
the probability of having filed a patent and the average number of patent applications on file. Within each product category,
we compute the average probability and number of patents ×1000 (log) for each bin. Each dot/triangle plots averages after
weighting different product categories by their importance in the whole sector, as measured by their sales share.
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Figure B4: Product Innovation and Patenting by Firm Size. Different Cate-
gories
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(a) Product Introduction Rate
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(b) Quality-Adj. Product Introduction Rate

Notes: The figure plots the βk coefficients from estimating the regressions Yijt =
∑5
k=1 βk Pijt−1 × Qijk + αij + γjt + uijt,

where Yijt is product introduction rate (Panel (a)) and quality-adjusted product introduction rate (Panel (b)) of firm i in
product category j in year t; Pijt−1 is the patenting rate of firm i in product category j in year t− 1; Qijk are dummies equal

to one if the firm i’s average sales in product category j are in the kth quintile of firm sales distribution in j. The regression
includes firm × category and category × year fixed effects. Standard errors are clustered at firm, category, and year levels.
We aggregate product categories into food (dry grocery, frozen foods, dairy, deli, packaged meat, fresh produce and alcoholic
beverages) and non-food (health and beauty, non-food grocery, and general merchandise. Standard errors are clustered at the
firm × category level.
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Figure B5: Share of Product-Related Patents by Firm Size Percentile
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Notes: This figure plots the shares of product-related patents held by firms across deciles of firm size, defined in terms of sales.
We classify patents into product-related patents based on the claims of patent documents (Appendix A.2).
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Figure B6: Product Introduction and Patenting by Size: Process and Product
Patents
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(a) Product Patents
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(b) Process Patents

Notes: The figures show results similar to Figure 7, for product introduction rates, splitting patents into process and product
patents based on classification in Bena and Simintzi (2017). The left panel plots regression coefficients including only product-
related patents. The right panel plots regression coefficients, including only (matched) process-related patents. Standard errors
are clustered at the firm × category level.
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Figure B7: Prices and Process Patents

-.1
0

.1
.2

.3
C

oe
ffi

ci
en

t

Q1 Q2 Q3 Q4 Q5
Size Quintile

 

Notes: This figure plots the coefficients from a regression of prices on the interaction between rates of process patenting and
quintiles of firm size, based on average sales. The figure plots the βk coefficients from estimating the regressions Yijt =∑5
k=1 βk Pijt−1 ×Qijk + αij + γjt + uijt, where Yijt are prices and Pijt−1 is the process patenting rate of firm i in product

category j in year t−1; Qijk are dummies equal to one if the firm i’s average sales in product category j are in the kth quintile
of firm sales distribution in j. The regression includes firm × category and category × year fixed effects. Standard errors are
clustered at the firm × category level.
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Figure B8: Product Introduction and Patenting by Size: CPG-Only Firms
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(b) Quality-Adj. Product Introduction Rate

Notes: The figure plots the βk coefficients from estimating the regressions Yijt =
∑5
k=1 βk Pijt−1 × Qijk + αij + γjt + uijt,

where Yijt is product introduction rate (Panel (a)) and quality-adjusted product introduction rate (Panel (b)) of firm i in
product category j in year t; Pijt−1 is the patenting rate of firm i in product category j in year t− 1; Qijk are dummies equal

to one if the firm i’s average sales in product category j are in the kth quintile of firm sales distribution in j. “CPG-only” firms
are defined using Compustat and NETS, as described in Section A.1. The regression includes firm × category and category ×
year fixed effects. Standard errors are clustered at the firm × category level.
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Figure B9: Patent Text and Match Properties by Firm Size Percentile
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(a) Number of words in patent documents
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(b) Unique words in patent documents
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(c) Relative entropy of patent word dist.
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(d) Word diversity index of patent word dist.
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(e) Share of matched patents
Notes: The figure plots various text and match characteristics of patents held by firms in different size (sales) deciles. All size
deciles are constructed within product categories, except for panel (e) that is based on firm-level deciles. The first panels plot
means and medians of the average number of words (a), the number of unique words (b), the relative entropy between the
patent’s word distribution and the word distribution of all patents (c), and the Simpson’s diversity index of the patent’s word
distribution (d) of firms’ patents. Panel (e) looks at the share of matched patents in the firms’ whole patent portfolio (that
is, the number of patents from patents-to-products dataset divided by the number of patents from firm-level match) for the
sample of CPG-only firms (see Section A.1 for the definition) for which the non-matches are less likely to be due to the firm’s
operations outside the CPG sector. Panel (f) plots the similarity scores of the matched patents.
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B.1 Results with Alternative Matching

In this section, we present our main results under different specifications of our matching
algorithm. In our baseline specification, we classify product modules into 400 clusters,
which we refer to as product categories. We do so since we believe this partition strikes a
balance between aggregating very similar products while maximizing the difference between
products across categories. Nonetheless, in this section, we show that our main findings
are similar if we use the product classification scheme developed by Nielsen: 1,070 detailed
product modules aggregated into a set of 114 broad product groups.

We also present our main results using a higher matching similarity threshold. Recall
that patents with low text similarity are deemed unrelated to the product categories that
we consider. In our baseline specification, we restrict the set of potential categories for
each patent to the product categories whose similarity score exceeds 0.025. This section
shows that our main results hold when using a higher similarity score of 0.05. We construct
two versions of this exercise: version 1 assigns a patent to the highest-similarity product
category, conditional on the similarity being above 0.05 and the rank being below 5; version
2 assigns a patent to the highest-similarity product category, conditional on the similarity
being above 0.05. As before, if these conditions are not satisfied for any product category,
then the patent is classified as a “non-match.”

Table B8: Product Introduction and Patenting Rates (using the NielsenIQ prod-
uct group aggregation)

Product Introduction Product Introduction
Quality-Adjusted

(1) (2) (3) (4) (5) (6)

Patents(t-1) 0.0407*** 0.0187***
(0.008) (0.003)

Patents granted(t-1) 0.0527*** 0.0223***
(0.010) (0.004)

Patents citations adj.(t-1) 0.0593*** 0.0266***
(0.014) (0.006)

Observations 309,718 309,718 308,630 309,718 309,718 308,630
R-squared 0.363 0.363 0.364 0.303 0.303 0.303
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates
as a function of the patenting rates, using firm × category × year data. Product and quality-adjusted product introduction
rates are defined as the number of new products or quality-adjusted new products over a total number of products in firm ×
category × year. Product quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of patent
applications in a particular category-year over the total number of cumulative patents in that category-year; Patents granted is
the ratio of the firm’s number of granted patent applications in a particular category-year over the total number of cumulative
patents in that category-year; Patents citation-adjusted is the ratio of the firm’s number of citations-weighted granted patents
in a particular category-year over the total number of citation-weighted granted patents in that category-year. Observations
at the firm × category × year level with zero patents are included in the regression. Standard errors are clustered at firm ×
category level. We use an aggregation of modules into product groups as defined by Nielsen.
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Table B9: Product Introduction and Patenting: by Size (using NielsenIQ prod-
uct group aggregation)

(1) (2) (3) (4)
Product Introduction Product Introduction

Quality-Adjusted

Patents(t-1) 0.0407*** 0.0920*** 0.0187*** 0.0507***
(0.008) (0.024) (0.003) (0.010)

Size(t) 0.0102*** 0.0013***
(0.000) (0.000)

Patents(t-1) x Size(t) -0.0046*** -0.0028***
(0.002) (0.001)

Observations 309,718 309,718 309,718 309,718
R-squared 0.363 0.367 0.303 0.303
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data, similar to Table 4 but introducing size (firm sales in
category-year) and size interaction with patenting. Product and quality-adjusted product introduction rates are defined as the
number of new products or quality-adjusted new products over a total number of products in firm × category × year. Product
quality measures are defined in Section 2.3.1. Patents is the ratio of the firm’s number of patent applications in a particular
category-year over the total number of cumulative patents in that category-year. Observations at the firm × category × year
level with zero patents are included in the regression. Standard errors are clustered at the firm × category level. We use an
aggregation of modules into product groups as defined by Nielsen.

Table B10: Product Introduction and Patenting: by Size (Higher Similarity
Threshold)

Threshold 0.05, version1 Threshold 0.05, version 2
Product Intro. Product Intro. Product Intro. Product Intro.

Quality-adjusted Quality-adjusted
Patents(t-1) 0.0384*** 0.0766*** 0.0143*** 0.0421*** 0.0420*** 0.1008*** 0.0147*** 0.0461***

(0.008) (0.023) (0.003) (0.009) (0.008) (0.026) (0.003) (0.009)
Size(t) 0.0102*** 0.0012*** 0.0103*** 0.0012***

(0.000) (0.000) (0.000) (0.000)
Patents(t-1) -0.0033** -0.0024*** -0.0049*** -0.0026***
× Size(t) (0.002) (0.001) (0.002) (0.001)

Observations 409,434 409,434 409,434 409,434 409,131 409,131 409,131 409,131
R-squared 0.357 0.362 0.302 0.303 0.357 0.362 0.301 0.302
Time-Category Y Y Y Y Y Y Y Y
Firm N N N N N N N N
Firm-Category Y Y Y Y Y Y Y Y

Notes: The table shows regressions of the product introduction rates and quality-adjusted product introduction rates as a
function of the patenting rates, using firm × category × year data, but introducing size (firm sales in category-year) and size
interaction with patenting for higher similarity thresholds. To find the match, Version 1 keeps only categories with similarity
above 0.05 and rank below 5; Version 2 keeps all categories with similarity above 0.05 regardless of rank. Product and quality-
adjusted product introduction rates are defined as the number of new products or quality-adjusted new products over the total
number of products in the firm × category × year. Product quality measures are defined in Section 2.3.1. Patents is the ratio
of the firm’s number of patent applications in a particular category-year over the total number of cumulative patents in that
category-year. Observations at the firm × category × year level with zero patents are included in the regression. Standard
errors are clustered at the firm × category level.
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C Theoretical Appendix

C.1 Microfounding Profit Function

Consider a partial equilibrium framework that depicts the innovation process in a single
product category. There are J potential producers, and aggregate output is produced using
a combination of their quality-weighted varieties:

Y =
1

1− β

[
J∑
j=1

q
α

1−β
j yj

]1−β

, (13)

where yj denotes the quantity, and qj is the quality level of variety j. This specification
implies that products from different producers are perfect substitutes after adjusting for
their qualities. The parameter α captures the consumer’s satiation with respect to additional
quality. Labor is the only factor of production. Producers use labor to make intermediates
by hiring workers at the common wage w. Output of variety j is then given by yj = lj, where
lj is the amount of labor used to produce variety j.61 We assume that an overhead cost of
production ε must be paid before choosing prices and output. Since producers’ marginal
costs are the same and qualities are different, under Bertrand competition, even a small
overhead cost allows the highest-quality firm to act as the sole producer.62

The incumbent producer maximizes profits by choosing the price of its product subject
to demand curve: p = qαy−β that follows from (13) (normalizing price of Y to one). We
obtain the following equilibrium values for output (y), sales (R), and profits (Π):

y =
1− β
β

π

w
qγ, R =

π

β
q
γ

, Π = πq
γ

, (14)

where π ≡ β
(

1−β
w

) 1−β
β and γ ≡ α

β
. Hence, an incumbent with a higher-quality product

is larger and earns higher sales and profits. We assume 0 < α < β (i.e., 0 < γ < 1),
implying that marginal quantity, sales, and profits decline with quality–a case supported by
our calibration, which estimates γ < 1.63

61The model abstracts from production efficiency and cost-reducing process innovations, focusing instead
on product innovations to align with our empirical analysis.

62This assumption, standard in this class of models, simplifies the setup. Alternatively, we could work
with limit pricing, where the highest-quality firm serves the whole market but sets its price based on the
second-highest-quality producer.

63Alternatively, a declining size-innovation relationship can arise from weaker scalability of R&D with firm
size (Akcigit and Kerr, 2018) or from an innovation-advertising trade-off (Cavenaile and Roldan-Blanco,
2021).
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C.2 Deriving Rates of Creative Destruction

Depending on the actions of the incumbent firm, our model delivers the following rates of
creative destruction.

• If the incumbent firm neither patents the idea nor introduces a new product, creative
destruction happens at a rate

p× Pr

(
q + λe > q

)
= p.

Hence, any product of higher quality introduced by an entrant will capture the full
market.

• If the incumbent firm does not patent but successfully commercializes the product,
creative destruction happens at a rate

p× Pr

(
q + λ+ λe > q + λ

)
= p.

Again, any product of higher quality introduced by an entrant will capture the market.

• If the incumbent firm patents but does not introduce new products:

p× Pr

(
q + λ+ λe > q + λ+ ε

)
= p(1− ε).

Although higher quality products by entrants can still win the market, now entrants’
innovation needs to be sufficiently large to also withstand the legal protection from
the incumbent’s patent.

• Similarly, if the incumbent firm patents and also introduces new products:

p× Pr

(
q + λ+ λe > q + λ+ ε

)
= p(1− ε).
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C.3 Model Quantification and Counterfactuals: Details

The model features seven structural parameters: r, p, ε, λ, γ, c̃m, and c̃p, where c̃m and c̃p
denote the respective cost parameters normalized by π. We set the interest rate to r = 0.04
and calibrate the parameters governing creative destruction, the entrant arrival rate (p) and
the patent protection step (ε), using data on firm sales growth by patenting and product
introduction status. In the model, firms that neither innovate nor patent face an expected
sales decline from creative destruction equal to log(1−p). Using our baseline firm × category
× year data for 2007-2015, we compute the median revenue growth for firm-category pairs
without patents or new products, which implies p = 0.095. This decline is mitigated if a
firm holds a patent. Conditional on not innovating, the impact of patenting on growth is
log 1−p(1−ε)

1−p . To quantify this, we regress revenue growth on log patents with firm-category
and category-year fixed effects, restricting to observations without product introduction.
Multiplying the estimated coefficient by 0.88, corresponding to the shift from zero to one
patent under the inverse hyperbolic sine transformation, yields the implied value of ε = 0.23.

Table C1: Model Parameters

Parameter Identification Value

r Interest rate External calibration 0.04
p Arrival rate of entrants Direct data 0.095
ε Patent protection Direct data 0.23
λ Innovation step Internal calibration 0.0751
γ Elasticity of revenue to quality Internal calibration 0.89
c̃m Cost of commercialization Internal calibration 2.74
c̃p Cost of patenting Internal calibration 42.13

Notes: Table presents all calibrated parameters, and the procedure to parameterize its value.

For the remaining four parameters, we calibrate the model to match the innovation
rate, patents per innovation, and sales growth of firms between the 10th and 90th size
percentiles.64 Intuitively, c̃m and c̃p determine the levels of innovation and patenting, λ
governs average growth conditional on innovation, and the curvature parameter γ shapes
how this growth varies with firm size.

For each firm × product category, we compute: (i) the innovation rate (new products
relative to existing ones), (ii) patents per innovation (log patent applications over new
products), and (iii) revenue growth (2(yt− yt−1)/(yt + yt−1)), comparing innovators to non-
innovators. We then aggregate these measures to the average within size bins.

To map data percentiles to quality levels in the model, we first normalize the quality q
of the average firm in each product category to one. Then, using profit equation Π = πqγ,
we obtain q = (Rev

Rev
)1/γ, where we measure Rev as the firm’s revenue per products in a

product category, and Rev denotes the average revenue in the product category. This
gives us a mapping between the average normalized revenue in various percentiles to their
corresponding levels of q in the model.

64Because of the model’s parsimony, it has difficulty closely fitting the extremes of the size distribution,
especially growth rates, so we estimate parameters outside this range.
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Figure C1: Model vs Data
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(b) Patents per Innovation
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(c) Revenue Growth

We minimize the distance between the model’s innovation rate zm(q), the log patent-

to-innovation ratio log zp(qi)

zm(qi)
, and log revenue growth ∆ logR and their corresponding data

moments. The objective function is

min
λ,γ,c̃m,c̃p

90∑
i=10

[
5(zm(qi)−m1

i )
2 + (log

zp(qi)

zm(qi)
−m2

i )
2 + (∆ logR(qi)−m3

i )
2
]1/2

,

where m1 denotes the product introduction rate, m2 the log number of patent applications
per new product, and m3 revenue growth. We place a higher weight on the innovation
moment, the cleanest measure and less prone to noise from the patent-matching procedure.

Table C1 reports the calibrated parameters, and Figure C1 illustrates the model fit.
Despite its stylized nature and few parameters, the model matches firm innovation rates,
patenting intensity, and growth across the size distribution quite well.
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C.4 Size-Dependent Patenting Cost

To highlight firms’ incentives for product innovation and patenting, and to clarify how mo-
tives for strategic patenting arise, especially among larger firms, the main model abstracted
from size heterogeneity in patenting costs by assuming that cp was independent of firm
size (∂cp/∂q = 0). In reality, large firms may patent more frequently also because their
effective patenting costs are lower. Larger firms tend to be more experienced with filings,
have in-house legal teams, and possess greater resources for litigation.65 Such technological
differences would naturally yield more patents with weaker links to product introduction
for larger firms.

We next illustrate, through counterfactuals, that even if patenting costs decline with firm
size, incentives for strategic patenting remain essentially unchanged. Lower costs provide
large firms with additional technological reasons to patent more than small firms, but the
strategic motive from the main model is unaffected.

To show this, we compare two economies with size-dependent patent costs to the baseline
economy with uniform costs. Because the literature offers no reliable estimates of size-
dependent patenting costs, we consider two illustrative cases: patent costs for large firms
are set at one-half and one-fifth of those for small firms (and relative to the uniform baseline).
Table C2 reports the results. The left panel repeats the uniform-cost economy from Table
9, while the middle and right panels show the size-dependent economies.

As expected, lower costs increase large firms’ patenting, both relative to the baseline
and to smaller firms. However, when we repeat our first counterfactual exercise—comparing
benchmark outcomes to those in an economy without strategic patents while holding in-
novation fixed—the share of “excess” strategic patents is virtually identical: 84% in the
baseline versus 84% and 83% in the size-dependent cases. Thus, even when large firms face
lower patenting costs, their reliance on strategic patenting persists.

Table C2: Lower Patenting Cost for Large Firms. Comparison
cLargep = cp cLargep = cp/2 cLargep = cp/5

Benchmark No strategic Benchmark No strategic Benchmark No strategic
uniform benchm. zm size-dependent benchm. zm size-dependent benchm. zm

Innovation (zm) 0.1550 0.1550 0.1597 0.1597 0.1737 0.1737
Creative destr. (τ) 0.0915 0.0944 0.0879 0.0939 0.0774 0.0919
Patenting (zp) 0.1614 0.0252 0.3228 0.0520 0.8071 0.1416

Notes: The table compares three economies. The first economy (left panel) repeats the uniform-cost economy from Table 9,
while the middle and right panels show the size-dependent economies with patent costs for large firms set at one-half and
one-fifth of those for small firms (and relative to the uniform baseline). Within each panel, we report the benchmark and the
counterfactual economy, where the latter shuts down strategic patenting while holding the product innovation rate fixed at
the benchmark.

65Graham et al. (2009) report that application and enforcement costs are the most common reasons for
forgoing patenting. Lerner (1995) documents that litigation costs in particular deter smaller firms from
patenting.
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Hortaçsu, Ali and Chad Syverson, “The Ongoing Evolution of US Retail: A Format Tug-
of-war,” Journal of Economic Perspectives, 2015, 29 (4), 89–112.

Hottman, Colin J, Stephen J Redding, and David E Weinstein, “Quantifying the Sources
of Firm Heterogeneity,” The Quarterly Journal of Economics, 2016, 131 (3), 1291–1364.

Jaravel, Xavier, “The Unequal Gains from Product Innovations: Evidence from the U.S.
Retail Sector,” The Quarterly Journal of Economics, 2019, 134 (2), 715–783.

C6



Lai, Ronald, Alexander D’Amour, David M. Doolin, Guan-Cheng Li, Ye Sun, Vetle Torvik,
Amy Yu, and Lee Fleming, “Disambiguation and Co-authorship Networks of the U.S.
Patent Inventor Database,” Research Policy, 2014, 43 (6), 941–955.

Lloyd, Stuart, “Least Squares Quantization in PCM,” IEEE transactions on information
theory, 1982, 28 (2), 129–137.

C7


	Introduction 
	Data, Matching Algorithms, and Measurement
	Data
	Matching Algorithms
	Matching Firms
	Patents-to-Products Match
	Match Statistics and Validation 

	 Measures of Product Introduction and Patenting
	Product introduction
	Patent Measures

	Summary Statistics 

	Patents and Product Innovation on the Market 
	Baseline Estimates
	Firm Size Heterogeneity 
	Declining Patents-to-Innovation Relation with Size: Robustness 
	Large Firms and Strategic Patents  


	Patents, Innovation, and Firm Growth
	Patents and Creative Destruction 

	A Simple Model
	Implications of Strategic Patenting. Quantitative Illustration
	Model Extensions and Limitations 

	Conclusion
	Additional Data Information
	Product Data
	Patent Data
	Algorithm of Firm Match 
	Algorithms of Patents-to-Products Match 
	Summary of the Methods of Natural Language Processing
	Step 1: Defining Product Categories 
	Step 2: Patent Vectors and Similarity Scores
	Step 3: Classifying Patents into Product Categories

	Robustness and Match Validation 
	Manual Checks of the Patent-Product Category Matches 
	External Validation. Virtual Patent Markings
	Robustness of the Match. Patent Similarity with Top vs Lower-Rank Categories
	Actual vs Placebo Match of Patents to Product Categories 
	Validating Non-matches. CPG-only Firms and Product-Related Patents

	Patents and Products in CPG. Examples. 
	Measuring Product Innovation
	Novelty-Based Measures
	Residual Demand Measure
	Descriptive Statistics


	Additional Empirical Results
	Results with Alternative Matching 

	Theoretical Appendix
	Microfounding Profit Function
	Deriving Rates of Creative Destruction
	Model Quantification and Counterfactuals: Details
	Size-Dependent Patenting Cost


