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Abstract

This paper develops a dynamic model of technology adoption featuring strategic com-
plementarities: the benefits of usage increase with the number of adopters. Such an
effect is inherent to several technologies, such as means of payments. We show that
complementarities give rise to multiple equilibrium paths, multiple steady states, and
suboptimal allocations. The model generates slow adoption, as individuals optimally
wait for others to adopt before doing so. We apply the theory to the adoption of
SINPE, an electronic peer-to-peer (P2P) payment app developed by the Central Bank
of Costa Rica. Transaction-level data on the use of SINPE and several administrative
data sets on the network structure allow us to exploit plausibly exogenous variation
and to document sizable complementarities. A calibrated version of the model shows
that the optimal subsidy pushes the economy to universal adoption.
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1 Introduction

Understanding the forces behind technology diffusion is important in several areas of eco-
nomics (see e.g. Parente and Prescott (1994); Comin and Hobijn (2010); Stokey (2020)).
While the literature has studied the role of learning in shaping adoption processes, less is
known about how the process of diffusion is shaped by strategic complementarities, where one
agent’s benefit from adoption increases with the number of adopters. We develop a dynamic
model of technology adoption to study the role of such complementarities in the diffusion
of a technology. The model allows us to analyze the efficiency of the equilibria and discuss
optimal policy interventions.

In particular, we focus on the diffusion of new means of payments, such as mobile money
and other peer-to-peer (P2P) payment instruments, which have been recently propelled by
digitization (see e.g. Economides and Jeziorski (2017); Aron (2018)) and which have also ap-
peared in several plans for central bank digital currency (see e.g. Auer et al. (2020); Carapella
and Flemming (2020)). A central feature of our analysis is the presence of complementarities
in adoption, which are an inherent property of payment instruments: the benefits of the
payment instrument are larger if more people use it.

While the applied literature studying technology adoption has long recognized the pres-
ence of complementarities, whereby the probability that a new technique is adopted is an
increasing function of the proportion of firms already using it (see Griliches (1957); Mansfield
(1961)), progress in this research area has been hindered by the challenges that arise when
modeling adoption dynamically—a large state space, non-linear decisions, multiple steady
states, and multiple equilibria, and by the lack of detailed data on technology diffusion. We
develop a simple model featuring complementarities and fully fledged dynamic decisions: the
current decision to adopt depends on the whole path of future adoptions, and transition
paths can be characterized in closed form. The model embraces the possibility of multiple
equilibria as well as multiple steady states. We discuss equilibrium existence and analyze its
local stability. We also characterize the planner’s problem and its implementation through
subsidies.

We use the model to study the diffusion of SINPE, a digital platform developed and
administered by the Central Bank of Costa Rica.! The platform was launched in May 2015
and over 60% of the adult population uses the app in 2021; moreover, over 10% of the
country’s GDP is transacted through SINPE. This is a pertinent application of the theory
because payment technologies intuitively feature strong network complementarities. In fact,

we leverage a battery of granular administrative datasets to characterize adoption patterns

More precisely, the app is called “SINPE mévil,” although throughout we will be referring to it only as
“SINPE”, which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish).



and to document the presence of strong complementarities in adoption.?

The model assumes the flow benefits of using the technology at time ¢ depend on the
number of agents who have already adopted the technology, N(¢), and on an idiosyncratic
persistent random component, x(t). Adoption entails a fixed cost and agents choose when
to adopt taking the aggregate path of adoption as given. The model also includes an inten-
sive margin for the usage of the technology. We show that when the idiosyncratic benefits
are random the equilibrium features gradual adoption through a simple mechanism: agents
wait for others to adopt.® This differs from previous contributions, discussed below, where
gradualism is either absent, exogenously assumed (e.g., by means of staggered adoption op-
portunities), or due to learning. While gradualism could also be generated (or amplified) by
a learning mechanism, we see strategic externalities as a key inherent feature of means of
payment.* The optimal adoption rule is given by a time-dependent threshold value, denoted
by Z(t), such that adoption is optimal if z(t) > Z(¢). We assume that the economy starts with
an initial measure of agents that have adopted the technology. Aggregation of the optimal
adoption rule across agents yields a path for the fraction of agents that adopt the technology
at each time ¢, N(t). The equilibrium has a classic fixed point structure: the optimal decision
path (Z) depends on the aggregate path (IV), and viceversa.

We obtain several theoretical results. First, we establish the monotonicity of the optimal
decision rules and of the aggregation to study the set of equilibrium paths.” Second, we
obtain a comparative static result with respect to the initial measure of adopters and the
strength of the strategic complementarities. We show that there is a critical mass /N such
that, if the initial measure of adopters is below NN, then there is an equilibrium where no
one will adopt in the future. Third, we show that besides the steady state with no adoption
the model has two additional interior steady states, which we label low- and high-adoption
steady states.

Fourth, we conduct a perturbation analysis with respect to the initial condition to study

the stability of the interior steady states.® We find that the low-adoption steady state is

2See Bjorkegren (2018) for a related network-goods analysis using data on mobile phones adoption in
Rwanda.

3We also analyze a model where z is heterogeneous across agents but fixed through time, mostly to
compare with the existing literature. A key takeaway from this model is that, starting from a no adoption
initial distribution, it features no dynamics; it is not a model of slow diffusion, but one of “jumps.” Instead, the
stochastic model features slow adoption given the option value of waiting for a high draw of the idiosyncratic
benefit.

4See Cabral (1990); Reinganum (1981) for an early analysis of a dynamic equilibrium with externalities.

5As expected, given the strategic complementarities, the equilibrium set is a lattice, i.e., the equilibrium
paths can be ordered in terms of their intensity of adoption. This means that when there is more than one
equilibrium their paths do not cross.

6This is a non trivial problem that involves the linearization of an infinite dimensional system, which
we handle leveraging techniques from the Mean Field Game literature, developed in Alvarez, Lippi and



locally unstable, while the high-adoption equilibrium is locally stable. Given these results,
we focus on equilibria with either no activity or high activity in the steady state.

Fifth, since all equilibria are socially inefficient, we solve the planner’s problem. This is a
non-trivial problem that involves controlling the entire distribution of agents across time. We
decentralize the planner’s solution using a time-varying subsidy paid to those that use the
technology. The optimal subsidy corrects the network externality, and if the initial condition
has lower adoption than the steady steady of the planner problem, the subsidy is increasing
across time.

We then use data on the diffusion of electronic payment methods and user networks to
quantify these strategic complementarities. In particular, we leverage detailed data from
SINPE, an app that connects users in Costa Rica and allows them to mobilize funds between
their bank accounts. Information on all SINPE transactions has been collected since its
inception in May 2015, which allows us to analyze the dynamics of adoption of this system
of national payments in great detail. In turn, data on users—both receivers and senders—
can be linked to several relevant networks, including the employer-employee network, family
networks, and spatial networks to explore the role of neighbors.

The platform data allow us to test several model predictions. We document five new
empirical facts which align with our model. First, we find the technology diffused slowly;
while by 2021 over 60% of the adult population had adopted SINPE, adoption has grown at
a constant rate since the app’s launching. Second, most transactions are peer-to-peer; while
firms can potentially use SINPE, over 90% of the transactions are between individuals, which
aligns with a model like ours, where small agents trade with each other, rather than one with
a few non-atomistic players (large firms). Third, individuals “belong” to networks; 75% of
all transactions occur between coworkers, neighbors, or relatives. Fourth, there is evidence
of selection at entry: we find that users who adopted when adoption rates were low use the
app more intensively, and that early adopters have higher wages and skills than those who
adopt later. These patterns align with our model where individuals with a high benefit adopt
the technology early on. Fifth, there is evidence of strategic complementarities: changes in
the share of people within a network who adopt SINPE are associated with changes in the
intensity with which users in that network use the app. We see these facts as consistent
with the key assumptions of our model where agents are heterogenous and network effects
are important.

We then proceed with a strategy to calibrate the model. Our quantitative analysis com-
bines a model of strategic complementarities with a random diffusion of information model

following the seminal work of Bass (1969). The calibration requires us to estimate the value

Souganidis (2022b).



of the parameter that governs the strength of the strategic complementarities. We do so by
exploiting exogenous changes in the network of coworkers after a mass layoff. In particular,
we examine how the share of coworkers who has adopted changes as someone moves from
one firm to another one for plausibly exogenous reasons. This strategy allows us to leverage
our rich data to overcome the fact that people select into their networks and the reflection
problem that arises when common shocks affect those in the network. We examine how both
the extensive and the intensive margin of adoption respond. The intensive margin, in par-
ticular, aids us in teasing out strategic complementarities from other channels. We calibrate
other parameters in the model using key moments from the data, including the half-life of the
share of adopters. The calibrated model shows that the optimal subsidy moves the economy
to 100% adoption.

Contribution to the literature. In contrast to the previous literature, which has stud-
ied deterministic problems (e.g. Stokey 2020), our model allows for both stochastic network
connections and an initial arbitrary path of the distribution of adopters. Our theoretical
approach has three advantages relative to the previous literature studying adoption dynam-
tcally. First, it allows for dynamics in technology adoption as observed in the data. In the
stochastic version of the model, our model has dynamics even without the inclusion of fric-
tions to delay the transition to steady state. Second, our model allows for multiple equilibria
(e.g. Cabral 1990). As a result, we can consider equilibria with low adoption rates due to
coordination failures, a feature that is very relevant in low income countries. Lastly, and
more importantly, casting the problem as a Mean Field Game allows us to solve the planning
problem. This is relevant for policy since the presence of network externalities implies that
the solution of the decentralized problem is not efficient. The solution of this problem is
non-trivial since the planner needs to account for the law of motion of the density of non-
adopters at each point of the state space and each time period. Our framework allows us to
compute the optimal subsidy, which equates the solution of the decentralized problem with
that of the planner and depends positively on the importance of strategic complementarities,
which can be estimated directly in the data. Relevant studies include Benhabib et al. (2021),
who model firms that can endogenously innovate and adopt at technology and the effect of
these choices on productivity and balanced growth, but without conducting an analysis of the
transitions between steady states; Crouzet et al. (2023), who develop a model with a unique
equilibrium where the rate of adoption increases given a shock due to complementarities and
where dynamics come from a sluggish adjustment a la Calvo (1983); and Buera et al. (2021),
who study policies that can coordinate technology adoption across firms.

On the empirical front, SINPE data spans from 2015 to 2021. During this time, it went



from zero adoption to over 60% of national adoption. These features allow us to study the
general equilibrium effects of adoption across a long time period and complements previous
studies, summarized by Suri (2017), that have relied on RCTs or shorter periods of time
to analyze the patters of adoption of electronic methods of payment. In contrast to other
large-scale studies, of which the closest one to our work is Crouzet et al. (2023), who rely on
variation in the intensity with which Indian districts were exposed to the cash contraction
induced by the 2016 Indian Demonetization, we are able to use individual-level data on
adoption and SINPE usage, on individual earnings and demographic characteristics, and on
each person’s network of SINPE users, relatives, neighbors, and coworkers. This provides an
opportunity to understand the characteristics and relevant networks of each user, identify
the strength of complementarities and how they vary across networks and time—at both the

extensive and intensive margins—and the dynamics of adoption over a long time period.

2 Model setup

We setup a model to study the adoption of a new technology. The economy is populated
by a continuum of agents that differ in the potential benefits from adopting the technology.
Let N(t) denote the number of agents that have adopted the technology at time ¢. Let
x € [0, U] be the idiosyncratic potential benefit of adopting, due to e.g., the agent’s strength
of connections. We assume that the flow benefit of the technology for an agent who adopts
are given by

2(0p + 0,N(t)) (1)

at time t, where 6,0, > 0 are parameters. The idiosyncratic potential x follows a Brownian
motion, independent across agents, with variance per unit of time o, no drift, and reflecting
barriers at * = 0 and x = U, so that dv = odW where W is a standardized Brownian
motion. We let ¢ > 0 be the fixed cost of adopting the technology. The time discount rate is
r > 0, and we assume that with probability v per unit of time agents die, so that the agents
discount at rate p = r +v. Agents that die are replaced by newborns without the technology
and are given a random draw x from the invariant density f on [0, U] which is uniformly

distributed due to our reflecting barriers assumption, i.e. f(z) =1/U.

2.1 Optimal adoption decisions

In this section we describe the optimal adoption decision as a function of the whole path of

N, the fraction of agents that adopt the technology. Let a(z,t) be the value function of an



agent who uses the technology and has state x at time t:

a(x,t) = E[/too e P57 (B 4 0,N(s)) z(s)ds

() = x] 2)

for all t > 0 and = € [0,U]. Note that the agent takes the path N(s) as given.

For technical motives we assume that the path of N(s) is constant at some given value N
for s > T where T is given. All our results hold for finite but arbitrarily large T', and some
of the results hold for T — oo. Later on we will focus on the case when N is a steady state
value for the model with T" = oo.

An agent with state x that at time ¢ has not yet adopted has a value function v(z,t) that
solves the following stopping-time problem

v(x,t) = I?<aXE e (a(z(1),7) —¢) ‘ z(t) = x} (3)
where 7 denotes the time of the adoption and depends only on the information generated by

the process for x’s and on calendar time.

Discretized model. For future use we introduce a discretized version of the model. It is
defined by positive integers I, J which determine step sizes for ¢ given by A; = % and for x
given by A, = & Thust € {A(j—1):j=1,...,Jtand a(t) € {A,(i—1):i=1,...,I}.
The reflecting Brownian Motion, Poisson processes, and discounting are changed accordingly,
following the scheme used in finite difference approximations. See Definition 2 in Appendix A
for a detailed definition.

As a preliminary result, we show that the optimal adoption policy is a threshold rule:

ProposITION 1. Fix a path N and a time ¢ € [0,7]. If it is optimal to adopt at (x1,1),
then it is also optimal to adopt at (z9,t) where x5 > x;. This holds for the continuous time

as well as for the discretized version.

This proposition means that we can represent the optimal adoption rule at time ¢ as a
threshold rule, Z(¢). The result is intuitive but non-trivial since the process for x is persistent.

We denote ar(z) = a(z,T) and vr(z) = v(z,T), that depend only on the constant N.
We can now concentrate on the time interval [0,7]. In this interval we write the optimal
decision rule as a function of the path N : [0,7] — [0, 1], and of the functions ar and vy.
Indeed, the optimal decision depends on the difference between a; and vy which we denote
by Dr = ar — vp, further discussed in Section 2.4. We denote the optimal threshold as
T = X(N; Dr), so that z : [0,7] — [0,U].



2.2 Aggregation

In this section we aggregate the individual adoption decisions and compute the implied path
for the fraction of adopters, N. We start by defining the probability that an agent alive at s
with state x(s) = x survives until time ¢, while the value of her state remains below Z during

this period, i.e:
P(z,s,t;7) = Pr|x(t) < Z(1), for all v € [s, ] ‘ z(s) = x} o v(t=3) (4)

For an agent that at time s has x < Z(s), the value of P(z, s,t;Z) gives the probability that
this agent will survive up to ¢t without adopting.

We let mo(z) be the density of the agents at time ¢ = 0 without the technology. Given
our assumption about x, we require 0 < m(z) < 1/U for all x € [0, U]. The fraction of agents

that have adopted the technology at time ¢ is thus given by

Nit)=1- /OU P(z,0,t; F)mo(z)dz — /Utu [/OU P(x,s,t;x)%dm ds (5)

The second term on the right hand side is the fraction of agents who did not have the
technology at time 0 and survived until time ¢ without adopting. The third term considers
the cohorts of agents that are born between 0 and ¢, and for each of these cohorts computes
the fraction that survived without adopting up to t. We note that an equivalent version of
equation (5) holds in a discretized version of the model.

We denote the resulting path of N as a function of Z (the path of the adoption threshold)

and of the initial condition mg, namely N = N (z;my).

2.3 Equilibrium

The equilibrium is given by the fixed point between the forward looking optimal adoption
decision, encoded in X, and the backward looking aggregation, encoded in N. To emphasize
the forward looking nature of X', note that it depends on the terminal value function Dy =
ar — vyr. To emphasize the backward looking nature of N, note that it propagates the initial

condition mgy. We then have

DEFINITION 1. Fix an initial condition mg, and a terminal value function Dy. An equilibrium
{N*,z*} solves the fixed point :

N* = F (N*;mg, Dr) where F (N;mg, Dr) =N (X (N; Dr);mg) (6)



and the corresponding z* = X (N*; Dr).

Note that this is a canonical definition of equilibrium, where the operator F combines the
two operators A/ and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.4 A recursive formulation of the equilibrium

The functions a(z,t) and v(z,t), and the optimal policy Z(t), have a recursive representation
in terms of Hamilton-Jacobi-Bellman (HJB) partial differential equations. We derive these
equations and their boundaries in Appendix G. The information encoded in the equations

can be summarized by the value function D(z,t) = a(z,t) — v(x,t), which satisfies:

pD(x,t) = min {pc , (6o + 0,N(t)) + %Dm(m, t) + Dy(z, t)} (7)

for all z € [0,U], t € [0,T] and terminal condition D(x,T) = Dy(x) = ar(z) — vr(x).

We interpret the value function D(x,t) as the opportunity cost of waiting to adopt. To
see why, note that a(z,t) — ¢ is the net value of adopting immediately while v(z,t) is the
net optimal value, that may entail adopting in the future, see equation (2) and equation (3).

From here it follows that
D(x,t) = E[ / P70 (g + 0, N (s)) 2(s)ds + e P Ve ‘ 2(t) = a;} (8)
t

Optimality requires that D(z,t) < ¢, which implies the value matching condition at the
barrier. We are looking for a classical solution that satisfies:
2

pD(z,t) = 2(6y + 0, N (1)) + %Dm(x, t) + Dy(z,t) 9)

for all = € [0,Z(¢)] and ¢ € [0,T] with boundary conditions:

D(z(t),t) =c Value Matching
D.(z(t),t) =0 Smooth Pasting (10)
D,(0,t) =0 Reflecting

If the solution is regular, it also features smooth pasting. Finally, since x = 0 is a reflecting
barrier, the value function has a zero derivative at that point.
Let m(x,t) denote the density of the agents with x that have not adopted at t. The law



of motion of m for all ¢ > 0 is:

my(z,t) =v (% — m(a:,t)) + %mm(x,t) if 0 <z <Z(t)
t)y=0 forx e [z(t),U] (11)
m,(0,t) =0

m(z,

and initial condition mg(x) = m(z,0) for all x € (0,U). The p.d.e. is the standard Kol-
mogorov forward equation (KFE). The density of non-adopters is zero to the right of Z(t),
since this is an exit point. The last boundary condition is obtained from our assumption that
x reflects at x = 0.

The fraction of agents that have adopted the technology is thus given by

N(t)=1- /i(t) m(x,t)dz (12)

A definition of equilibrium equivalent to Definition 1 can be obtained as the four functions
{D,m,z, N} satisfying the coupled of p.d.e.’s for D and m, and the respective boundary
conditions, given by equation (9), equation (10), equation (11) and equation (12). This is
the typical definition used in the Mean Field Game literature. We note that this system of
p.d.e.’s is involved for two reasons. First the equations are coupled through z and N. Second,
the equations feature a free boundary (for every period), akin to the Stefan problem which

is known to be non trivial.

3 Equilibrium of the Stochastic Baseline Model

In this section we establish equilibrium existence. We first give a normalization of the primal

problem that is useful for empirical applications.

LEMMA 1. The problem with parameters {c, p,v,o,0y,0,,U}, initial condition my,
f(z) = 1/U and equilibrium objects {Z(t), N(¢t),a(xz,t),v(x,t)} for x € [0,U] and t € (0,7T)
is equivalent to the following normalized problem {ULGO’ IR Z—Z, 1} for a normalized
variable z = § € (0, 1)_ and t € (0,7) with initial condition mg(z) = U mg(z), f(z) = 1 and
equilibrium objects {%J\Wf),d(z,t) 7@(z,t)} where a(z,t) = Opa (2U,t) and v (z,t) =
Oov (2U, ).

The lemma shows that the problem features 5 independent parameters as U and 6, can

be normalized without affecting the nature of the solution as the dynamics of the technology

diffusion are unchanged.



3.1 Monotonicity and Existence of Equilibrium

The next proposition shows that the function X, giving the path of the optimal threshold x
as a function of the path N, is monotone decreasing. Thus an agent facing a higher path of
adoption will choose to adopt earlier. Moreover, the proposition shows that an agent facing

larger values of 0y and/or 6,,, will also adopt earlier.

PROPOSITION 2. Fix the terminal value function Dy = ar — vy and 6,, > 0. Let T be the
threshold path implied by N(¢). Consider two paths such that N'(t) > N(t) for all t € [0, T,
then 7’'(t) < z(t). Moreover, let 6 = (6, 6,,) with the corresponding optimal threshold path
z. If 0 > 0 then 7/(t) < z(t).

Proposition 2 also holds if we replace the continuous time model by a discrete-time,
discrete-state, approximation to it. For instance, it holds for a finite difference approximation,
which we use for some computations, and which converges to the continuous-time version.
The reason the proof holds is that we verify the conditions to use Topkis (1978). Thus,
once we reformulate the problem in terms of stopping times, we can apply the monotone
comparative statics logic developed by Milgrom and Shannon (1994) to characterize the
policy function.

Next we show that for the same initial condition mg(z), if the path z(t) < Z/(t) then
N'(t) < N(t) for all . We need to show that the fraction of non-adopters is decreasing in

z(t). This implies that A is monotone decreasing.

PROPOSITION 3. Fix my and consider two path of thresholds z, 2’ satisfying z/(t) > z(t) for
all t € [0,T]. Let N' = N (';mg) and N = N (Z;myg). Then N'(t) < N(t) for all t € [0,T].
Moreover, fix a threshold z, and consider two initial measures with m{(x) > mg(z) for all
z € [0,U], then N' = N (Z;mg) and N = N (Z;mg). Then N'(t) < N(t) for all ¢t € [0, 7.

The next theorem uses the monotonicity of X and N, established in Proposition 2 and
Proposition 3, which by the definition in equation (6) implies that F is monotone. This
allows us to use Tarski’s theorem. For technical reasons the theorem applies to a finite
horizon, discretized version of the model introduced in Section 2.1 where the time domain
[0, 7] is divided into J segments and the state [0, U] is divided into I segments (see Definition 2
in Appendix A).” We have:

THEOREM 1. Consider a finite horizon, discrete time - discrete state version of the model
and 0, > 0. Fix an initial condition mg € RL and a terminal value function Dy € R%.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest

"The reason is the completeness of the lattice in which F is defined.

10



equilibrium, {#L, N}, and a largest one, {#f1, N#} and any equilibrium path {Z, N} satis-
fies NI < N < NH and 7' >z > zH.

(ii) Let 0" > 0 and my, < mg. Consider the equilibrium {z’, N’} with the largest N’ corre-
sponding to {¢',m{} and the equilibrium {z, N} with largest N corresponding to {6, mq}.
Then 7’ < 7z and N' > N.

The first statement of the theorem establishes existence of the equilibrium for the finite
horizon - discrete time version of the model. The result holds for an arbitrary small length
of the time period, and for an arbitrary large horizon T . An important consequence of
the theorem is that the equilibrium set, for a given initial distribution of non-adopters my
and terminal valuation Dy = ar — vp, is a lattice. Moreover, we can compute the value
of the extreme equilibria by iterating on N*** = F(N*; Dy, myg) for k = 0,1, ..., starting
from N°(¢) = 1 or from N°(¢) = 0, for all ¢. The theorem ensures that the limit converges
to a fixed point. If the two sequences converge to the same limit, then the equilibrium is
unique. The second statement of the theorem establishes a useful comparative statics result:
considering a model with a larger 6 or with a smaller my implies that the high-adoption

equilibrium is larger (more agents adopt).

4 No adoption Equilibrium

In this section we analyze the equilibrium in which there is no adoption i.e. Z(t) = U for all
t. To simplify we focus on the case where T' = oco. This case is particularly easy because
agents decision are in a corner. We find the basin of attraction for such equilibrium, i.e. we
find a threshold for the number of adopters IV, so that a no adoption equilibrium exists if

and only if at ¢ = 0 there are fewer agents with the technology than N.

PROPOSITION 4. A no-adoption equilibrium with Z(t) = U and N(¢) = N(0)e " for all
t > 0 exists if and only if 1 — fOU mo(x)dx < N, where

=6y 14 g(nU)]

[1 +g(n'U)] (13)

n = \/> p+1/ and g(y) = csch(y) — coth(y) € (=1,0) . (14)

Y

Note that N > 0 if and only if & > 0y [1 + g(nU)]. Moreover, if N > 0 we have:

(i) NV is an increasing function of o, satisfying

() <<t () =




where the two limits are reached as 0 — 0 and as ¢ — oo, respectively.

(ii) IV is a decreasing function of 6,,.

An immediate corollary of this proposition is that mg(z) = 1/U is a steady state provided
that N > 0, i.e. under this condition if we start with no adoption, then one stays with no
adoption. The fact that N > 0 requires 6, to be small is intuitive: when this condition is
violated then agents with a large x will find it profitable to adopt regardless. Likewise, the
effect of o is intuitive since, for a given U, a large ¢ makes the process to revert to the mean
faster. Finally, if 6, is large then it is more profitable to coordinate on high N and then the

basin of attraction is smaller.

5 Steady states

In this section we let T" = oo and analyze the steady state version of the model. We look
for an initial condition mg such that the distribution is invariant, so that z(t) = Zs and
N(t) = Ngs, both constant through time.

5.1 Steady states in the deterministic model (o = 0)

We begin by studying the deterministic case where o = 0, so that the agent’s valuation z
does not change. This case is useful to relate to the existing literature studying technology
diffusion (e.g. Stokey (2020); Buera et al. (2021); Crouzet et al. (2023)), and it unveils the
basic forces at work in the adoption problem.

We specialize equation (7) to the steady state of the deterministic model. Since o2 = 0

then D,,0? = 0 and since we focus on a steady state D, = 0. The equation then becomes

pD(x) = min {pc , (0o + GnNss)} (16)
for all x € [0, U]. The steady state threshold Z,;, is the value of x solving
pc = Zss(0y + 0, Nss) (17)

Using equation (11) and imposing the 02 = 0 and the steady state m; = 0 condition gives

one equation for the invariant distribution of agents without the technology which is given
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by m(z) = ¢ for z € [0, T, and m(x) = 0 for x € [T, U] so that we have

jSS
Ngg=1—— 18
U (18)

Figure 1 plots the non-linear equation (17) and the linear equation equation (18). Solving
this simple system for T, gives a quadratic equation that can have zero, one or two interior
steady states. We have the following:

PROPOSITION 5. There are two cases. Case (i): If pc < 6yU, then there is a unique steady
state, T, and it is interior i.e. 0 < Ty < U. Case (ii): If OU < pc, then there is always
a no activity state state, zs; = U. In this case, there is threshold value for € such that if

0, < 0 there is no other steady state, whereas if #,, > 0; there are two additional interior
steady states.

In words, multiple interior steady states occur when the complementarities are large

relative to the intrinsic value of the technology, i.e. when 6, is small and 6, is large.

Figure 1: Deterministic steady state solution

jSS "ESS

(i) pe < 6U (i) BoU < pc and 6, large

We concentrate on the steady state of the deterministic model for two reasons. First,
for small ¢ they provide a good benchmark for the steady state of the stochastic model
analyzed next. Second, we omit the treatment of the dynamics of this model because for
a non-pathological set of initial conditions the model converges immediately to the steady
state. Indeed, in Appendix H we show that if the initial condition is such that at time zero
no agent with low valuation has adopted the technology (while some high valuation agents
may have done so), the equilibrium of the deterministic problem has no dynamics. This

implies that adoption occurs instantaneously and that the fraction of adopters is a constant

13



N(t) = Ngs. Interestingly, the stochastic version of the model will instead feature dynamics,

namely a gradual adoption of the technology so that N(t) is increasing through time.

5.2 Steady states in the stochastic model (o > 0)

A steady state is given by two constant values of Ny, and Z,, that solve the time invariant
version of the partial differential equations presented in Section 2.4. Given Ny, we obtain
D(z,t) = D(z) and Z(t) = Z,. Given Z,, we obtain and m(z,t) = m(x), from which we

derive Ng,. Given N, we find D and Tss that solve:

pD(z) = z(0y + 0. N,,) + %Qf)m(:v) if x € [0, Zg] Value of Adoption

D,(0) =0 Reflecting

D(fss) =c Value Matching
Dx(:i'ss) =0 Smooth Pasting

Given Z,, solve for m

2

1
0= —vin(x) + v + %mm(x) KFE if & < 7,

m(Zss) = 0 and m,(0) =0 Exit and Reflecting

and given m(z) and T, we define the fixed point

Nys=1-— / m(s)dz .
0

We begin by solving f)(x), and T, given a value for Ng. The details of the solution
can be found in Appendix C.1. Using the solutions for D we can solve for X, : 0,1] —
[0, U], a function that gives the optimal steady state threshold as a function of a given Ng.
The monotonicity properties of the function D on the parameters N, 6, ¢ and 6, give the

following characterization of the threshold X;.

LEMMA 2. The function X, is decreasing in N, strictly so at the points where 0 < z,, < U.
Fixing a value of N, the function X, is strictly increasing in ¢, strictly so at the points
where 0 < Z,, < U. Fixing a value of Ny, the function X, is strictly decreasing in 6,

and #, at the points where 0 < z,, < U. Moreover we have the following expansion:
Xes(Ngs) = —90+gsts + ﬁ + o(0).

Since the function Xgs(Nys) is decreasing in Ny, it has an inverse, which we denote by
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Xt and it is given by:

Ss

1
X*1 (j:ss) = — - - (fi (A ies—A e*”]iss))(eﬁiss-i,-e*'ﬂiss) — 00 where
(-i'ss + Agentss + AZein:fss) o — ;

n(en®—e~N%ss)
(1 — e_"U) _ 1 (1 — e"U)

- 1
AIEEW7A2E_— andnE\/Zp/UQ (19)

n (e —en)

Note that, from the expansion given in Lemma 2, fixing Z,,, then X 1(Z,,) is increasing in

o in a neighborhood of ¢ = 0, provided that ¢, > 0, we have

1 cp
Xz~ — [ ——————=—0
> ( SS) On (mss - 0/\/% 0)
Next we can solve the Kolmogorov forward equations for m(x), given a barrier Zs, subject
to an exit point and to the conditions coming from the reflecting barriers. We denote the

corresponding value of the fraction that have adopted as N(Tss). The details of the solutions

can be found in Appendix C.2. Solving this equation we obtain

_ W (v
Nes(Tss) =1 — 33(;5 + W where v = /2v/0? (20)

As it is intuitive, the value of N (Zss) is decreasing in the level of the barrier . The next

lemma, obtained by analyzing equation (20) gives a characterization of N.

LEMMA 3. Fix vy > 0, then N, (Z) is strictly decreasing in Z,. Fixing > 0, then N, is
strictly increasing in «, and hence strictly decreasing in o. Moreover, we have the expansion:

Nis(®) =1 =% + 55 +olo).

Thus, together equation (19) and equation (20) determine Zg; and Ng. In particular, a

steady state, described by the pair z, Ny, which solve
Nss = N’ss(a_:ss) = X;sl(iss)

Next we summarize the behaviour of the steady states for small values of 0. We label
the steady states with superscripts {H, L} to hint at the associated High or Low level of

adoption, so that 27 < z*.

PROPOSITION 6. Assume that v > 0 and that the parameters 6, 6,,c and p are such
that there are two interior steady states in the deterministic case of ¢ = 0, and label them

as 7 < zL. Then, (i) there exists a @ > 0 such that for all ¢ € (0,5) there are two interior
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steady states 7 < L. (ii) Each steady state is continuous with respect to o at o = 0. (iii)

The sign of the comparative static differs across steady states, with

%>0>% and ajSLS >O>8ii’
Jdc oc 690 090

The proposition shows that the high adoption steady state behaves in an intuitive way,

H

i) associated to a smaller adoption cost (c¢), or to a larger

with more adoption (a lower Z
intrinsic value of the technology (6y). The comparative statics for the low adoption steady
states are just the opposite.

Importantly, the last term of equation (20) shows that there is a smaller density of non-
adopters for x € [0, Zs,] in the stochastic case relative to the deterministic case. This obser-
vations is key to understand why the stochastic case has dynamics. Panel (a) of Figure 2
shows the density of non-adopters around z for o = 0. In this case, the density of adopters is
very close to zero so that the distribution looks almost uniform, as in the deterministic case.
Panel (b) shows the same figure for ¢ > 0. First, Z,; is larger due to the option value that is
present in the stochastic model. More importantly, for o > 0, the density of adopters below
Zss 1S NON-zero, as a result the density of non-adopters is not uniform. The key novelty of the
stochastic model is that there are agents with z(¢) < Z(¢) who have the technology. These
are agents who adopted the technology in the past (for some #' < ¢t when z(t') > z(t'), and
whose = moved down in time. As a result, m(z) < 1/U when o > 0. Given that the density
takes time to adjust, the stochastic model features the presence of dynamics in the adoption

of new technology as the optimal value of Z is not independent of time.

Figure 2: Stochastic Steady State: Density of non-adopters: m(z)

1 1
U U
— —
=2 2
IS IS
—o=0
—0=0 —oa>0
mdeterministic deterministic
Tss Lss
(a) o =0 (b) o >0
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6 Perturbation and stability of equilibrium steady states

In this section we analyze the stability of the steady states. We explore the question using
a perturbation of the distribution of adopters in each of the two interior steady states. The
analysis uses techniques from the Mean Field Game literature developed in Alvarez, Lippi
and Souganidis (2022b). The analysis allows us to approximate X and A around the steady
state and to inspect the local stability of the equilibrium.

We begin with the approximation of Z(t) = X'(N)(t). We take the directional derivative
(Gateaux) with respect to an arbitrary perturbation n of a constant path N. In particular,
we consider paths defined by N(t) = Ny, +en(t) around the steady state Ng. We will denote
this Gateaux derivative by .

ProproSITION 7. Fix an interior steady state z,s, with its corresponding N,. Let Dy
be equal to the steady state value function D corresponding to that steady state. Let n :

[0,7] — R be an arbitrary perturbation. Then

X (Nys + en; D)(t) — X(Nys; D) (1)

) = I
§(t) = lim -
«9 T
== G(1t —t)n(1)dt 21
where
o0 2 1 . 2 .
= o Vis > o g 7(5 +7) o B cos(my)
G(S)—j;c]e >0,¢;,=p+ 5 (—fss and¢; =2 (1 —W(j—i-%) ,

where Dm(a’css) < 0 is the second derivative of the steady state value function:

™ — pPC — fss [90 + enNss]
D:px(xss) — 0_2/2 y NSS =1-

Tgs  tanh (7Zgs) 2v
—— "2 and v =4/ —
v r YT

Thus we can write Z(t) = Zss + €y(t) + o(e). Note that G is positive and D,, is negative,
so the effect of the future path on the current value is negative, which is consistent with the
property that X is decreasing. Also note that it is proportional to 6, so if #, = 0, then the
threshold will be constant. Thus, the approximation of Z(t) depends on the perturbation
of the path of N from ¢ to T, given by n(s) for s = [t,T]. The proof of the proposition
is obtained by jointly differentiating with respect to e the system defined by D and Z in

equation (9) and equation (10). This produces a new p.d.e., and boundary conditions. The
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expression for ¢ is obtained once we solve this new p.d.e., see the proof in Appendix D.1.
Now we turn to the perturbation for the fraction of the adopters as a function of the
thresholds and of a perturbation of the initial condition. We approximate N (t) = N (Z, mo)(t)
by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation y
of a constant path z and a perturbation w on the steady state m. In particular, we consider
paths defined by Z(t) = Zss + € y(t) around the steady state x5, and mo(z) = m(z) + ew(z).

We will denote this Gateaux derivative by n.

PROPOSITION 8. Fix an interior steady state Z,, with its corresponding Ny, and let m
be the corresponding steady state distribution of non-adopters. Let w : [0, Zs] — R be an
arbitrary perturbation to the distribution, and let g : [0, 7] — R be an arbitrary perturbation
of the threshold. Then

N (Zss + ey;m + ew)(t) — N (Zss; m) (1)

n(t) = lgiigl ;
= no@)(t) + P e rygtryar )
where
J(s) = Z e " with p; = v + %(72 (ﬂz—:ﬁ) (23)
no(w)(t) = — Tos _ (05,0) e Mt (24)

— (3 +7) {5 %5)

o,(x) = sin (% +j) . (1 _ f)) for & € [0, %.4] (25)

L ;(r)w(r)dr and m,(ZTs) = —% tanh(yZ )

Thus we can write N(t) = Ngs + en(t) 4+ o(e). This formula has the effect of two pertur-
bations. One is the perturbation on the initial condition mg given by w, whose effect is in
the term ng(w)(t). Alternatively, ng(w)(t) is the effect at time ¢ on the path N(¢) of a per-
turbation of the initial condition keeping the threshold rule z fixed. The function ng(w) can
be further reinterpreted by considering the limit case of perturbation w given by (the limit)

of distribution concentrated at x = & < I, i.e. a Dirac’s delta function as w(x) = d;(x). In

izsm ((% +j)m <1 B ;)) o Hit

= (3 + )7

this case

n0(0z)(t) = —
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The second term in equation (22) contains the effect of the perturbation y on the path
of the threshold, Z(s). Alternatively, this term gives the effect at time ¢ on the path N(¢)
of a perturbation of the threshold rule z keeping the initial condition fixed. Note also that,
consistent with our general result for N, the effect of the thresholds is negative, because
J >0 and m,(Zs) < 0.

For future reference it is useful to understand the behaviour of ny(t) as function of time.

In particular, the rate at which the perturbation w to the initial distribution converges back to

2
the steady state, while keeping Z(t) = Z,,. This rate is given by the value of g = v +%2 (;)

which is the dominant eigenvalue, which correspond to a half-life h given by:

log(2)

. )
a T
v+ (£53>

The strategy of the proof is similar to the one outlined for the previous proposition and

h= (26)

is given in Appendix D.2.

The next step is to use the last two propositions to derive one equation for the linearized
equilibrium as a function of the perturbed initial distribution mg(z) = m(x) + ew(x). We
combine equation (73) and equation (22) to arrive to a single linear equation that n(t) must

solve as a function of w.

THEOREM 2. Fix an interior steady state Z,, with its corresponding N,,, and let m be
the corresponding steady state distribution of non-adopters. Let mg(x) = m(x) + ew(x).
Let Dy be equal to the value function D corresponding to that steady state. The linearized

equilibrium must solve

n(t) = no(w)(t) + @(3755)/0 K(t,s)n(s)ds (27)

Mg (?53)02071

ZssDaa (iss)

where ng(w)(t) is given in Proposition 8 and O(Z) = > 0. The kernel K is given

by

>0 (28)

|:€(M+¢j)min{t,8} — 1
i + Pj

72

2
Moreover, Lip, = sup, [ |K(t,s)|ds < <x2> . Furthermore, if ©(Z,) Lipx < 1 there exists

o
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a unique bounded solution to equation (27) which is the limit of
T
n(t) = [I+ 6K+ 6°K*+...] ng(w) where K(g)(t) = / K(t,s)g(s)ds
0

and where K71 (g)(t) = fOT K(t,s)K’(g)(s)ds for any bounded g : [0,7] — R.

This theorem gives a linear system of equations that the perturbation of the equilibrium
around a steady state must satisfy, as well as a partial characterisation of its solution. The

proof can be found in Appendix D.3.

7 The planning problem

This section sets up the planning problem in the stochastic version of the model (o > 0).
We first state the planning problem, provide a characterization of its solution, and show
how it can be decentralized as an equilibrium with subsidies. Section 7.1 characterizes the
steady state of this problem. Section 7.2 uses a linearized version of the problem to analyze
dynamics around the steady state.

The planner solves a non-trivial dynamic problem, since it has as its state the entire

distribution. At time zero the planner solves:

max{ /0 et /0 " — () (6 + 6uN(0) d

{z@®}
Density of adopters Flow benefit
— / e e (Ny(t) + vN(t)) dt }
0

Flow of adoption cost: gross new adoptions

subject to
z(t)
N(t) = —/ m(z,t)dz for all ¢
0
2
my(x,t) = —v (m(z,t) — 1/U) + %mm(:c,t) for x € (0,Z(t)) and all t > 0 KFE
m(z,t) =0 forx € [z(t),U] and all t > 0 Adoption
my(0,¢) =0 forallt>0 Reflecting
m(z,0) = mg(x) initial condition

The objective function of the planner integrates the lifetime utility of agents using as a
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weight the discount factor e for the cohort born at t. The first term contains the utility
flows of all those using the technology. The second term subtracts the cost of adoption across
time, where Ny(t) + vN(t) is the gross cost of adoption at time ¢. The planner decides at
each time a threshold Z(¢) which determines adoption, and takes as given the initial condition
mo(x). The planner takes as given the law of motion of the density m that is only affected
through the choice of Z. The first constraint defines N(t), second is the KFE of the density
of non-adopters. As before, the density of non-adopters is zero to the right of z(t), there is
an exit point at z(t), and there is a boundary conditions from reflection at zero.

To characterize the solution we form a lagrangian for this problem. We denote the lagrange
multiplier of the KFE equation by e "*A(z, t) and replace N (t) and N;(¢) by the corresponding
integrals. To derive the p.d.e’s for non-adopters, we first adapt the planning problem to
discrete-time discrete-state using a finite-difference approximation. In this set up we allow a
more general policy, i.e. not necessarily a threshold rule. We obtain the first order conditions
for a problem in finite dimensions and take limits to find the corresponding p.d.e’s. We
provide details of this derivation in Appendix F.2. The p.d.e’s corresponding to the planning

problem are summarized in the following proposition.

PROPOSITION 9. A planner problem is given by {Z(t), A(z,t), m(x,t)} the path of optimal
threshold so that adoption occurs for z > Z(t), the Lagrange multiplier A\, and the density of

non-adopters m, respectively, such that the p.d.e. for non-adopters:

Z(t) z(t)
pA(z,t) =z (0 + 0,[1 — / m(z,t)dz]) + 6, (% — / m(z,t)zdz) (29)
0 0
+ Z (2, ) + No(,t) for 2 < T(t) and t > 0
Az, t) =cfor x> z(t) and t > 0
Ae(Z(t),t) =0for t >0 (30)
A:(0,t) =0fort >0

and

my(z,t) = v(1/U — m(z,t)) + %me(x,t) for z < z(t) and t > 0
m(x,t) =0 for x > z(t) and t > 0

mg(0,t) =0 fort >0

m(z,0) = mo(x)

This proposition has two important consequences. First, it allows us to compute the solution
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of the planning problem following similar steps as for the computation of equilibrium. Second,

it indicates how to decentralise the optimal allocation as an equilibrium. Let Z(t) = % —

foi(t) m(z,t)z dx. Comparing the p.d.e. the Lagrange multiplier A\ with the p.d.e. for D,
which characterizes the equilibrium, we see that the two only differ in the term 6,Z(¢) in
the flow. Thus, if agents that adopt the technology were given a flow subsidy 6, Z(t) every
period after they have adopted, then the planner allocation will be an equilibrium. Note that
0,7 (t) contains the inframarginal valuation of the technology for those that use it. So, this

subsidy corrects the externality. We summarize this discussion in the following proposition.

ProposiTION 10. Fix an initial condition mg and the solution of the planner’s problem
{z,\,m}. The planner’s allocation coincide with an equilibrium for the same initial condi-
tions with a time varying subsidy paid to adopters. The flow subsidy paid at time ¢ to those
that have adopted at ¢ or before is given by 6,,Z(t) where

Z(t) =

IS

Z(t)
— / m(z,t)xdx forallt >0 (31)
0

The subsidy 6,7 is independent of x.

For future reference we define as Z = Z(&; my) as the solution of the path for Z as defined
in equation (31). In particular, given Z and my, using the KFE one solves for the path of m,
and computing the integral in equation (31) gives Z.

Consider the path Z that solves the p.d.e. pA(x,t) =z (6y + HnN(t))—FHnZ(t)—I—é)\m(x, t)+
Aie(x,t) with the three boundaries given in equation (30) given the paths of N and Z and
terminal condition \(x,T) = Ap(x). For future reference, we define 7 = X¥ (N, Z; \r) to
denote the functional, which is defined as the X in Section 2.1 and where the superscript P
denotes the planning problem.

Note that, using the definitions for X¥', Z and N the planner’s problem must satisfy the
fixed point 7* = H(T*, Ap, mg) where H(Z; A\p,mg) = X (N (Z;m0), Z(Z;m0); M\r). We can
use the same type of analysis, based on monotonicity, to characterize the solution to this
fixed point problem, and to compute it. To simplify we omit this analysis.

We turn next to the description of the steady state of the planning problem.
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7.1 Steady State: Planning Problem

A steady state is given by two constants N,, and T, that solve the time invariant version of

the p.d.e. stated in Section 7. The p.d.e. for non-adopters in steady state is

pA(z) = (00 + 0,Nss) + 0,75 + %25\:”;(33) if v < g4 KBE
M) = ¢ FOC
5\:;:(5335) =0 Smooth Pasting
A2(0) =0 Reflecting
2
0=—vm(z)+rvf(z)+ %mm(xx) if v < 2 KFE

and given m and Ty, N and Z,, are defined as:

Ngys =1 —/ ) m(z)dz
0

Lgs = U/Q—/ xm(x)da:
0

Recall that S\(fss) is the Lagrange multiplier of the law of motion of the density of agents
that have not adopted in steady state. The details of the solution can be found in Ap-
pendix F.3. The following proposition summarizes the solution of stochastic steady state of

the planning problem.

PROPOSITION 11.  Let f,, = %(90—1—9”]\735) andn = /2p/c?. For fixed 0 < 1 < oo and small
C, Tos = 2 (i — %) For the case when o is small (i.e. 7 is large), Tss = é:s — % -I—\/%—p

Proposition 11 indicates that the solution of the stochastic version of the planning problem
also has the option value present in the decentralized version. This proposition can be used
to conclude that the steady state level of adoption in the planning problem is higher that
the high-activity steady state in the equilibrium.

7.2 Perturbation and stability of steady states

In this section we analyze the linearization of the planning problem around the steady state.
This linearization is analogous to the one for the equilibrium in Section 6.
We approximate z(t) = X (N, Z)(t) by taking the directional derivative (Gateaux) with
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respect to arbitrary perturbations n of a constant path N, and z of a constant path Z. In
particular, we consider paths defined by N(t) = Ny + en(t) and Z(t) = Zss + € 2(t) around
the steady state N s and Z ;. We will denote this Gateaux derivative by .

PrROPOSITION 12. Let Ar be equal to the steady state value function A corresponding
to that steady state. Let n: [0,7] — R and z : [0,7] — R be two arbitrary perturbations.
Then

5(t) = lim XP(Nys + €en, Zgs + €2; 5\)(15) — XP(Nys, Zs; :\)(t)

el0 €

:/t Gyn(T—t)n(T)dT+/t Gy (T —t)2(7)dT (32)

where
6 o0
Gun(T — 1) = ———— cie T () dr
=)= s et
20, - .
Gy —t) = =——— cje’wf(f’t)z(T)dT
Az’x(xss)xss =0

and v}, ¢;, and «y are defined as in Proposition 7.

Now we turn to the perturbation for the inframarginal value Z as a function of the
thresholds and of a perturbation of the initial condition. We approximate Z(t) = Z(&, mg)(t)
by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation y
of a constant path z and a perturbation w on the steady state m. In particular, we consider
paths defined by Z(t) = Zss + € y(t) around the steady state x5, and mo(z) = m(z) + ew(z).

We will denote this Gateaux derivative by z.

ProprosiTiON 13.  Let m be the corresponding steady state distribution of non-adopters
for the planner. Let w : [0, Z,s] — R be an arbitrary perturbation to the distribution, and let
y:[0,7] — R be an arbitrary perturbation of the threshold. Then

(1) = lim 2 ey F @)(t) = 2@ ) (1)

= zo(w)(t) + /0 H.,,(t —s)y(s)ds (33)
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where

|y Tl 4 g = oG (00) ot g 0
pr (3 +7) S2R2)

zo(w)(?)

H.,(q) = Mo (Zs)0 Zne (35)

where ¢;, m,, u; and 7 are defined as in Proposition 8.

Thus we can write Z(t) = Zgs + €z(t) + o(e). This formula has the effect of two per-
turbations. One is the perturbation on the initial condition mg given by w, whose effect is
in the term zp(w)(¢). Alternatively, zo(w)(t) is the effect at time ¢ on the path Z(t) of a
perturbation of the initial condition keeping the threshold rule z fixed. As in the case of
ng we can specialize w by Dirac-delta function d;, so that we concentrate the perturbation
around a value x = .

The proof of this can be found in Appendix F.5.

THEOREM 3. Let Z,s be the steady state of the planner problem, with its corresponding
Ny, Zss, and let m be the corresponding steady state distribution of non-adopters. Let
mo(z) = m(z) +ew(z). Let Ay be equal to the value function A corresponding to that steady

state. The linearized equilibrium must solve

§(t) = Go(t) + 6(7ss) / R (t, 5)(s)ds where (36)
Jo(w)(t) = /t Gn(7 — Eno(w) (7)dr + /t Gy (7 — t)20(w)(7)dr (37)

. . . o . . . .- o On g (Tss)o?
where ny is derived in Proposition 8, zj is derived in Proposition 13, ©(Zs) = % and

where the kernel K is given by

> e~ Wytps) max{t,s} _ o= (¥j+p)T

_ ¢jt+ iS ‘
K(t,s) =) (cj+ et ( T~ )>0 (38)

]: 1=0

2

L) Furthermore, if (:)Lipf( < 1 there exists a unique bounded

We have that Lipgz < (iQ

solution to equation (36) which is the limit of

N———

(1) = [I+ 6K + 6%+ ...] o(w) where K(g)(t) = /0 R (t, 5)g(s)ds

and where K71 (g)(t) = fOT K (t,s) K7(g)(s)ds for any bounded g : [0, 7] — R. The operator
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K is self-adjoint, and positive definite.

We again consider a perturbation to the steady state density of non-adopters. In this
case, we let mo(z) equal the steady state distribution of no-adopters of the decentralized
problem, so that the shock resembles a starting equilibrium with lower adoption than that
prescribed by the planning solution.

In Panel (a) of Figure 3 we display the time path of the equilibrium N (¢) for both the de-
centralized and planning problems. Since the initial distribution of non-adopters corresponds
to the steady state distribution of the decentralized problem, it is not surprising that the
path of N(t) of the decentralized problem is constant. On the other hand, the path of N(t)
of the planning problem jumps on impact and converges gradually to steady state. Panel (b)
shows the equilibrium path of the optimal subsidy Z(t¢), which jumps initially and increases
over time thereafter. In this example, although both decentralized and planning problems

have interior solutions, the planning solution mandates close to full adoption in steady state.

Figure 3: Planning Problem: mg(z) = m(x)
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8 Application: SINPE, a digital payment platform

In May 2015, the Central Bank of Costa Rica launched SINPE Mévil (hereafter, SINPE), a

digital platform that allows users to make money transfers between each other using their

8

mobile phones.® To use SINPE, users must have a bank account at a financial entity and

link this account to their mobile number.

8SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos FElectrdnicos), in Spanish.
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According to the Central Bank of Costa Rica, SINPE’s main goal was to become a mass-
market payment mechanism that could reduce the demand for cash as a method of payment.
As such, SINPE was originally designed to be used for relatively small transfers, which are
not subject to any fee as long as they do not exceed a daily sum. The maximum daily amount
transferred without a fee varies by bank; for most users, it is approximately $310, although
some banks have lower limits of $233 and $161.° The average size of transactions in SINPE

is about $46, and has slowly decreased over time, as shown is Figure I3.

8.1 Data

SINPE Transactions Our data on SINPE usage is comprehensive: For each user in the
country, we have official records on the ezact date when she adopted the technology, along
with records on each transaction made using accounts across different banks. In particular, for
each transaction, the data records the amount transacted along with the individual identifier
of the sender and the receiver of the money. Records also include the sender’s and the
receiver’s bank. Importantly, this information is available, not only for individuals, but also

for firms.

Family Networks and Demographics Data on nationwide family networks is available
from Costa Rica’s National Registry. In particular, these data records, for each citizen, if he
or she is married, to whom, and who their children are. Thus, it is possible to reconstruct
each person’s family tree. We find that the average number of first-degree, second-degree, and
third-degree relatives is 6.4 (median 5), 10.9 (median 9), and 22.0 (median 18), respectively.
The data includes individual identifiers that can be linked to SINPE. The data is dynamic,
meaning that we can see how family networks are changing over time between 2015 and 2021.

The same data source provides details on individual demographics.

Networks of Coworkers, Income, and Occupation Matched employer-employee data
was obtained from the Registry of Economic Variables of the Central Bank of Costa Rica,
which tracks the universe of formal employment and labor earnings. This data set includes
monthly details on each employee, including her occupation, earnings, and employment his-
tory between 2006 and 2021.° The average number of coworkers in our sample is 4.7 (median

1). Using this data set, we can identify which people are working at the same firm in a given

9Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones.

107t is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).
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month to construct networks of coworkers that can be matched to SINPE records. Networks

of coworkers change at a monthly frequency, as people change their employers.

Networks of Neighbors and Residential Location We construct networks of neighbors
for all adult citizens in the country leveraging data from the National Registry and the
Supreme Court of Elections. The data consist of official records on the residence of each
citizen, along with his or her identifier. While the records include each person’s district of
residence, and there are 488 districts across the country, they also include the voting center
which is closest to the citizen’s residence, with 2,059 centers in total. Thus, we leverage the
latter to get a more precise notion of a person’s neighborhood. Approximately, 1,670 adults

are assigned to each voting center, on average (median 613).

Firm-Level Data We leverage data on corporate income tax returns from the Ministry of
Finance, which cover the universe of formal firms in the country and contain typical balance
sheet variables, including sales, input costs, and net assets. The data start in 2005 to 2021

and includes details on each firm’s sector and location.

8.2 From Model to Data

We bring the model to the data by interpreting the flow benefit of agents who adopt the
technology as being proportional to how intensively they use SINPE. Specifically, suppose
SINPE users choose the intensity with which they use the application, &, maximizing the

following expression:

€1+p

1+p

5($7N)§ -

1
& (x,N) = arg max

where p > 0 so that the problem is convex and [(z, N) > 0. The first order condition

describes the optimal intensity in which the technology is used:
& (x,N) = Ba, N)'/* (39)

We can choose the function (z, N) such that the indirect utility function gives the specified

flow benefit, i.e:

€1+p

1+p

1+p

B(va)g -

[0p + 0, N]|x = max for all x € [0,U] and N € [0, 1]
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The solution turns out to be
B(z,N) = [(6o + 0,N) z]7+7 . (40)

Combining equation (39) with equation (40), and taking logs

1

1
In x, (41)
+p +p

Under this interpretation of the model, the intensity with which the application is used,
which is observable in the data (e.g. number or value of transactions), is proportional in logs
to the flow benefit of adopting the application as described in the model.

We can separate the effect of V; and x; by taking differences

1 1
Alnf: = FPAIH(HO + HnNt) + mA lOg Ty

which can be estimated using non-linear least squares. Alternatively, an approximation
around N* = 0 yields

where v is a constant and g = ﬁpg—g. We can estimate equation (42) using a linear specifica-

tion. The coefficient of interest is @ since strategic complementarities in the adoption of the
technology exist if @ > 0 (i.e. 6y > 0 and 6, > 0).

8.3 Stylized Facts

This section explores the diffusion process of SINPE across time and across networks, along
with the relationship between individual characteristics and technology usage. We document

five facts from the data that align with predictions of the model that we developed.

Fact 1: The technology diffused slowly. The adoption of SINPE has grown at a constant
rate over time since its inception in 2015, as shown in Figure 4 using monthly data on the to-
tal number of adopters.'! By 2021, close to 79% of the adult population in the country owned
a bank account, and over 60% of adults were SINPE subscribers who had not deactivated
their account. Moreover, the value of annual transactions in SINPE is approximately 10% of

GDP. Thus, this setting has the unique feature of allowing us to study the adoption of mobile

" The figures include a vertical dashed line at the beginning of the COVID-19 pandemic (March 2020). As
shown, it did not dramatically change the adoption rate.
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payments in the entire population of the country, across many years since the inception of the
technology, and until it reached almost the universe of the country’s adult population. The
fact that adoption occurs gradually coincides with the dynamics of our dynamic stochastic

model, and rules out the deterministic case in which adoption happens on impact.

Figure 4: Users, Transactions, and Value of Transactions
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Notes: Panel (a) shows total active SINPE users. We include only active subscriptions, as users have the
option of deactivating their account. Panel (b) shows both the total transactions in the application and the
total value of transactions. Both figures include a vertical dashed line to mark the start of the COVID-19
pandemic (March 2020).

Fact 2: Most transactions are peer-to-peer. In theory, firms are allowed to adopt SINPE
and conduct transactions within the app. In practice, however, transactions involving firms
represent a small fraction of all payments. In fact, as shown in Figure 14, individual-to-
individual transactions account for over 95% of all transactions, regardless of the time period
considered.'? This motivates us to study adoption through the lens of our model while fo-

cusing on peer-to-peer transactions only.

Fact 3: Individuals “belong” to networks. We can identify different types of networks for
each user. In particular, we could identify which transactions take place within an individual’s
network of neighbors, coworkers, or relatives. To do so, we construct the network of neighbors
of each user—which would correspond with the people assigned to her voting center—and
calculate the number and total value of SINPE transactions involving another user who

also resides in the same neighborhood. Similarly, we construct the network of coworkers for

12This finding holds if we instead consider unweighted number of transactions, as shown in Figure I5.
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each employed user based on employer-employee data. Finally, we construct family networks
taking into account relatives up to a third-degree of kinship.

In Table 1, we document that most transactions involve a counterpart who belongs to al
least one of these networks.'® Half of all transactions have a neighbor as counterpart, about
45% of all transactions are among coworkers, and 41% are conducted with relatives. We can
also consider the union of all three networks described above, and document that about three-
quarters of all transactions take place with someone within at least one of the three types of
networks. Moreover, we also document that users have relatively few peers with whom they
transact. Before 2019, each user had less than two distinct connections per month, both as a
sender and as a receiver. By the end of 2021 this number had increased; each user had just
over six distinct monthly connections and the average total number of distinct connections
per user was 48, i.e. people do not necessarily transact with the same six peers each month.'*

The average transaction size is $46, and has decreased slowly over time, as shown in Figure 13.

Table 1: Share of Transactions Within Network

Neighborhood Firm Family | Union of all three
(1) (2) 3) (4)

Neighborhood 0.43 0.72
Firm 0.62 0.44 '
Family 0.55 0.66 0.28

Notes: We construct average shares using data on transactions per user from 2018, i.e, the middle of our
sample period. Shares using the entire sample—from May 2015, when the technology was introduced, to
December 2021—are shown in Table I1.

Fact 4: The adoption of the technology across networks was staggered. We empirically
explore the dynamics of adoption for SINPE across networks and show that the early stages
feature an S shaped profile. This profile is qualitatively similar to what is produced by the
learning model, suggesting that initial awareness of SINPE was uneven across networks. We
classify networks (i.e. neighborhoods) according to their level of adoption. In particular, we
calculate the share of individuals within a network who had adopted SINPE by December
2021, the last period available in our data set. We then compute percentiles of this share
across networks to generate a distribution. Panel (a) of Figure 5 shows the timing of adoption
across different percentiles. We measure the timing of adoption as the period in which we

first see an individual within a network adopting. Panel (a) shows that networks with the

13Table 1 calculates shares using 2018 data; the midpoint of our sample period. Results remain quite
similar if, instead, we consider the average shares of transaction for the entire sample period, as shown in
Table I1.

14 Average monthly patterns are documented in Figure I6.
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largest shares of adopters also adopted the technology first; in fact, networks with the highest
penetration of the technology adopted instantly after the technology was launched. On the
other hand, networks with the lowest penetration took more than a year and a half to start
adopting the technology. Panel (b) shows the diffusion path of the technology for the median
neighborhood. It shows that the technology was adopted gradually within networks. Taken
of together, these panels show that networks which adopted the technology early also tend
to have higher penetration throughout our sample period. While Figure 5 is computed based
on networks of neighbors, the same patterns emerge when analyzing networks of coworkers

and relatives, as shown in Figure I10.

Figure 5: Entry and Diffusion Across and Within Networks of Neighbors
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Notes: Panel (a) shows the timing of adoption across networks, defined as neighborhoods. It shows the
entry date (the first time an individual within a network adopts the technology) across different percentiles
of the distribution of networks. Percentiles are calculated in the last period of the sample using the share
of individuals that had adopted the technology. Panel (b) uses the same classification of percentiles to show

the patterns of diffusion of the technology within networks.

Fact 5: There is evidence of selection at entry. Through the lens of our model, early
adopters—who started using the technology even when the network was small-—should be
more intense users (with higher x). Consistent with this notion, we document that early
adopters have distinct characteristics as compared with users who adopted later. For this
exercise, and the ones that follow, we classify an individual as an adopter from the time she
first used the app onward. First, as shown in Figure 6, we find that early adopters have a
higher average wage as compared with individuals who adopted later (Panel (a)), and are

on average more high-skill (Panel (b)).!® Early adopters are also younger, on average, than

15We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
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later adopters, as shown in Figure I7.
Second, recall the model-derived relationship between intensity of usage (£}) and the

share of user’s i network who had adopted when she used the app for the first time (N}, ):

lngg = ’y_‘_ﬁNirfentry + /\? + VZ,

where n €{neighbors, coworkers, relatives} and &} is defined as number of transactions of user
i each month ¢. Our model predicts that < 0, as users who adopted the app (“entered”)
when the network was smaller should have a higher idiosyncratic taste for the app and
use it more intensively. The regression also includes network-time fixed effects, so that the
relationship described by [ is not mechanical.

We estimate B to be —2.2, with a standard error of 0.004 when defining a network as a
neighborhood. This relationship is shown in Column (1) of Table 2, and while suggestive,
points to the presence of selection at entry. It is worth mentioning that this estimation
includes network-time effects, thus, the inverse relationship that we document is not just
mechanical. The relation is also robust to defining networks using coworkers and relatives,
as shown in Columns (2) and (3) in Table 2. The relation also holds if, instead of the total
number of transactions, we consider the value of transactions as our dependent variable, as
reported in Table 12.

Figure 6: Average Wage and Skill at the Time of Adoption
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Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ wages. Panel (b) shows the cross-
sectional distribution of SINPE users’ skills. High-skill users are those that are in an occupation that requires
more than a high school degree. The figures include a vertical dashed line to mark the start of the COVID-19
pandemic (March 2020).
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Table 2: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (logs)

(1) (2) (3)

Size of Neighbors’ Network at Entry = -2.215%**
(0.004)
Size of Coworkers’ Network at Entry -1.098%**
(0.004)
Size of Family Network at Entry -1.061%**
(0.004)

Observations 27,648,863 13,263,171 12,001,989
Adjusted R? 0.200 0.238 0.150
Network x Time FE Yes Yes Yes

Notes: The dependent variable in this estimation is the number of transactions each month for each user,
which we transform using the inverse hyperbolic sine function: In(§ + /&2 + 1). The coefficients describe
the effect of increasing the share of an individual’s network who had adopted the app at the time when
she downloaded it. We run regressions using data from May 2015, when the technology was introduced,
to December 2021.

Fact 6: There is evidence of strategic complementarities. The core idea behind strategic
complementarities is that usage benefits increase in the size of an user’s network. To test for
the presence—albeit suggestive—of these externalities along the intensive margin of adoption,

we consider the following version of equation (42):
A€l =5+ OAN] + pAsizel + N\, + VL, (43)

where In ¢}, the intensity with which individual 7 uses the technology, can be interpreted as
either the value or the number of SINPE transactions in a given month ¢, N;* is share of user
i’s network that has adopted the app, Asize} is the change in the level of network n, and we
include time fixed-effects, \;, which includes the effect of aggregate adoption increasing over
time. Again, networks can be defined in different ways, and as such n €{neighbors, coworkers,
relatives}. This regression has several advantages. First, it considers only the intensive
margin of adoption, and thus allows us to isolate the effect of strategic complementarities
from any other learning externalities which might be active when studying the extensive
margin of adoption.!® Second, as the regression is in changes, individual effects which might
affect usage cancel out, including the effect of the idiosyncratic taste (z), as it follows a

random walk.!”

16For instance, an individual might be more likely to learn about the existence of the app if she has more
friends who have adopted the app.

"In line with the model, as = behaves differently when it reflects on the barriers 0 and U, we trim the top
and bottom 1% of transactions in the empirical exercise.
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Table 3 shows results when considering n as a user’s network of neighbors, network of
coworkers, and network of relatives. The dependent variable in this table refers to the number
of SINPE transactions transformed using the inverse hyperbolic sine function. Results are
robust to considering alternative transformations.'®

Across specifications, we find that 0 remains positive and statistically significant. Further,
the coefficients corresponding with each network remain stable when considering all of them
simultaneously in Column (4) of Table 3. All findings remain unchanged if we consider the
monthly value of transactions of each user as our dependent variable instead of the number
of transactions, as reported in Table I4. Similarly, results are robust to including controls for

COVID-19 and cohort fixed-effects, as shown in Table I5, Table 16, and Table I7.

Table 3: Changes in Number of Transactions and Network Changes

Dependent variable: THS(A Number of Transactions)

(1) (2) 3) (4)
A Share Neighborhood Adopters — 1.062%** 0.897***
(0.025) (0.044)
A Share Coworkers Adopters 0.228%** 0.248%***
(0.006) (0.008)
A (Log) Wage 0.046%** 0.051%**
(0.001) (0.001)
A Share Relatives Adopters 0.470%**  0.476%**
(0.008) (0.009)
Observations 95,632,610 16,208,557 11,275,971 7,230,892
Adjusted R? 0.021 0.026 0.023 0.029
RMSE 0.793 0.765 0.793 0.759
Time FE Yes Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses. Extreme values
(one and 99 percentile) were trimmed from the dependent variables. Results are robust to alternative
transformations, as shown in Table I3, and to no trimming.

It is also possible to use an alternative measure of N, which will by construction compre-
hend all transactions. Namely, we take the last period in our sample (December 2021)—in
which most adults have already adopted—as our starting point, and then look back in time
at all transactions which have occurred. Then, for each individual, we define her network as

the collection of people with which she transacted at some point in time. Thus, for instance,

18Table 13 reports results using logs and also following Davis and Haltiwanger (1992), who define Az; =
z:;z:i, where z is the value of transactions for each individual. Moreover, while all these table trim
extreme values of the data (one and 99 percentiles), our results are robust to no trimming. Our preferred

specification, however, considers trimming as specifications hold only when z is not at the reflecting barriers.

35



the share of adopters in someone’s network in 2016 will have all her connections who have
adopted in the numerator, and all her past and future connections in the denominator. Ta-
ble 110 shows the results of estimating equation (43) using this alternative network and the
number of transactions per user as our dependent variable.! The positive and correlation
between changes in usage and in share of adopters within network is always present across

specifications.

8.4 Identification: Changes in Networks of Coworkers After a
Mass Layoff

Fact 5 in the previous section documented a correlation between the intensity with which
someone uses the app and the share of individuals in her network who have adopted it. In
this section, we consider an identification strategy to claim that this relationship is causal.
This strategy focuses on the network of coworkers and implements a movers design where we
follow workers fired during a mass layoff.

We focus on the workers displaced during mass layoffs to examine the effect of network

changes on the extensive and intensive margins of adoption.?’

Extensive Margin of Adoption For the extensive margin, we consider the change in the
probability of adoption for displaced workers who had not downloaded the app by the time
they were rehired depending on the change in the share of coworkers who had SINPE at their
old and new firm. The main hypothesis of this exercise is that workers who were displaced
during a mass layoff, and who ended up at firms where a larger share of colleagues had SINPE
(larger V), have larger incentives to adopt via the effect of strategic complementarities. We

consider:
Adopt; = a+ éANf"“’OTkeTS + A Inwage; + @&A In size; + \date hired; +©ACovid; + ¢;, (44)

where Adopt; equals one if individual ¢ adopted SINPE within 6 months after arriving to her
new firm, and zero otherwise; ANworkers s the change between the share of coworkers who
had adopted at the old and the new employer; A Inwage; corresponds with the change in the
average wage (in logs) across 6 months before the layoff and after the rehiring; Aln size; is
the change in the number of workers in each firm, date hired; controls for the date in which

individual 7 was hired by the new firm; and ACovid; controls for the change in the cumulative

19Table I8 displays results considering instead the value of transactions per user.

20To define a mass layoff, we follow Davis and Von Wachter (2011) and identify establishments with at
least 50 workers that contracted their monthly employment by at least 30% and which had a stable workforce
before this episode and did not recover in the following 12 months. More details are provided in Appendix J.
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Table 4: Extensive Margin of Adoption and Changes in Coworkers’” Network After a Mass
Layoft

Dependent Variable: Adopt; (Logit)

(1) (2) (3)

ANZ_coworkers 8 298¥** 5 ()1Q]I*<* 4 TE4NH<K
(0.119)  (0.147)  (0.152)
[0.450] [0.340] [0.315]

Alnwage; -0.004 -0.014
(0.033) (0.034)
ACovid,; 0.113%**
(0.016)
Observations 22,249 17,658 17,658
Pseudo R? 0.495 0.515 0.518
Time FE No Yes Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, and December 2021. Standard errors
are in parentheses. Marginal effects for the main variable of interest are reported in brackets.

COVID-19 cases (transformed using the inverse hyperbolic sine function) in the individual’s
neighborhood across the 6 months before the layoff and after the rehiring. Appendix J
provides more details on each of these variables.

Table 4 shows the results estimating equation (44) using a logit model. The marginal
effects of changes in network adoption are reported in brackets. We consistently find that
workers who, after a mass layoff, were hired by firms where the rate of SINPE adoption was
higher than their previous employer’s are more likely to adopt SINPE than their counterparts
who moved to firms where the change in their coworkers’ rate of adoption was smaller. The
marginal effect of ANwerkers ynder the specification described by Column (3) of Table 4,
is shown in Figure 7. This marginal effect is monotonous and—as expected—is present only

when the change in the share of adopters who had adopted is positive.

Intensive Margin of Adoption It is also possible to estimate the relationship between
share of adopters within one’s network and intensity of usage. To do so, we again focus on
workers who were fired during a mass layoff, but this time consider only displaced workers
who had already adopted and had used SINPE at least once by the time they were fired. We
then examine how the intensity with which they use the app changes depending on the
change in the share of coworkers who had SINPE at their old and new firm. As explained
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Figure 7: Marginal Effect of Network Changes on Adoption Probability
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Notes: This figure plots the marginal effect of ANFoworkers in the specification described by Column (3)
of Table 4. Bars denote 95% confidence intervals.

in the previous subsection, it is possible to derive the relationship in equation (43) from
our theoretical model, which speaks to the technology’s intensity of usage. Similarly as in

equation (43), we consider:
Aln fl =& + éANf"worke’”s + YA In wage; + &A In size; + Mate hired; + ACovid;+ (45)
t
dcohort; + v ln Z &+ 6, (46)

where Aln¢; refers to the change in monthly intensity with which individual i used SINPE
within 6 months after arriving to her new firm compared with 6 months before being fired,
cohort; controls for the date when individual ¢« adopted SINPE, and In Zt & is the sum of
all historical transactions made by agent ¢ since she adopted the app. The last two variables
aim to control for learning how to use the app due to having more people in your network
who have adopted it. Other variables are defined in the same way as in equation (44).2!
Table 5 displays our results using the number of transactions per user as our dependent
variable.?? As with the extensive margin, changes in the intensity of usage depend positively
and significantly on the change in the share of adopters at the old and new firm. Figure 8
displays the marginal effect of these network changes following the specification described by
Column (3) of Table 5. As Figure 8 shows, not only is the relationship between usage and

network changes positive, but also whenever a worker moves to a firm with a lower adoption

21 Appendix J provides more details on these variables and the choices made to conduct this exercise.
22Table 19 reports the same results with the value of transactions as dependent variable.
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rate, her usage decreases (i.e. the change on the vertical axis is negative).?

Column (4) controls for cohort, i.e. date of adoption, which aims to mitigate any effect of
more experienced users behaving differently than beginners. Column (4) also controls for the
total historical transactions made, which in a similar spirit as cohort, intends to mitigate any
effect coming from learning how to use the app from others. Interestingly, as compared with
Column (3), adding these controls does not change the coefficient of interest. This result
aligns with the following intuition: while at the extensive margin it is hard to disentangle
between strategic complementarities and “learning from others” about the technology, at the
intensive margin—once users have already adopted and used the app—a learning story is less

plausible, as reflected by 6 not changing after controlling for cohort and historical usage.

Table 5: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff

Dependent Variable: A Number of transactions (inverse hyperbolic sine)

(1) (2) (3) (4)

ANgoworkers 9 gGO¥HE ] GATHIK ] ORTHRE (995K
(0.153)  (0.171)  (0.180)  (0.183)

Alnwage; 0.401%**  (0.349*** (.363***
(0.046)  (0.044)  (0.048)
ACovid,; 0.167%F*  (0.155%**

(0.020)  (0.023)

Observations 1,554 1,554 1,554 1,554
Adjusted R? 0.141 0.221 0.257 0.280
Time FE No Yes Yes Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, and December 2021. Standard errors,
clustered by individuals, are in parentheses.

The analysis can be taken to an even more detailed level if, instead of considering all
transactions in out left-hand-side variable, we focus only on those transactions that had
a coworker as a counterpart. These allows us to better identify changes in usage intensity
which are a direct consequence of the arguably exogenous changes in the network of coworkers.
Reassuringly, the results are remarkably similar to those using all transactions, as shown in
Figure 9 and Table 111.%*

23The marginal effect considering the value of transactions as dependent variable, as opposed to the number
of transactions, is reported in Figure I8.
24The corresponding results using the value instead of the number of transactions is reported in Figure I9.
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Figure 8: Marginal Effect of Network Changes on Usage Intensity

Change Number of Transactions (asinh)
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Notes: This figure plots the marginal effect of ANFoworkers in the specification described by Column
(4) of Table 5. Bars denote 95% confidence intervals. The dependent variable in this estimation is the
number of transactions (transformed using the inverse hyperbolic sine function) on each period for each
user.

Figure 9: Marginal Effect of Network Changes on Usage Intensity Among Coworkers Only
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Notes: This figure plots the marginal effect of ANFoworkers in the specification described by Column
(4) of Table 5. Bars denote 95% confidence intervals. The dependent variable in this estimation is the
number of transactions which has a coworker as a counterpart (transformed using the inverse hyperbolic
sine function) on each period for each user.
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9 Quantitative Performance and Optimal Subsidy

In this section, we calibrate our model and evaluate its performance relative to the data of
SINPE Mobile. We begin by describing an extension of the model that combines the model
of strategic complementarities with the learning model. This extension is helpful to make the
model consistent with some features of the data. We then describe our calibration procedure

in detail.

A Learning Model with Strategic Complementarities: Using the derivations of the
previous section, it is straightforward to extend our benchmark model of strategic comple-
mentarities to include random diffusion of the technology across agents. The variational
inequality of the adoption decision, the value of an agent that already has adopted the tech-
nology a(z,t) and the value of waiting v(z,t), are the same as in the model with strategic
complementarities since these decision are made after agents are aware of the technology. On
the other hand, the law of motion of m needs to be modified to include the inflow of informed

agents as in the learning model.

my(x,t) = U;mm(x,t) + %I(t)(l — I(t)) —vm(xz,t) allt > 0 and x € [0, 7]

m(z,t) =0allt >0 and z € [z,U]

where I(t) is given by equation (79) and, as before, 5y indicates the number of meetings
per unit of time. The reflecting barrier of x at zero implies 0 = m,(0,t) for all £ > 0 and

continuity of m implies that m(z,t) =0 all ¢ > 0.

Calibration: By Lemma 1, the problem with strategic complementarities features 5 in-
dependent parameters as U and 6y can be normalized without affecting the nature of the
solution: v, p, 5, o, and ¢, where the tilde indicates the normalized parameters.?® In addition,
the model that includes learning requires an additional parameter to be calibrated, Sy, as
well as an initial condition for the population that is informed, 7(0).

We calibrate v to 0.0278 in order to match the rate at which agents stop using SINPE in
the data. This is the average fraction of agents in 2019-2021 that had adopted SINPE but
did not conduct a single transaction using the application the following year. We use the
last three years of the data, when the adoption rate is higher, to focus on periods closer to
steady state. We set the discount factor r to be consistent with a 5 percent annual interest

rate. This value is a lower bound for r; this parameter can admit higher values if we assume

PBe=L 5= ,and(‘)zg—z.
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that agents expect new technologies to arrive in the future and replace SINPE. The values
of v and r imply p =r 4+ v = 0.0778.

We interpret the flow benefit of agents who adopt the technology as being proportional
to how many transactions they conduct (i.e. how intensively they use SINPE). Thus, we set
0 = 1.8, which is consistent with our estimates in Table 5.2 We set & = 0.032 to reflect
the variation of transactions conditional on the size of the network of neighbors. To be more
precise, we use the residuals obtained from the estimation of equation (43) and calculate the
standard deviation. We adjust this estimate to reflect that the regression is estimated in logs
and for the range of transactions (i.e. U). We obtain estimates of U using the distribution of
transactions. Specifically, in the data, the average number of transactions per year is 95 and
the 99h percentile is 775. We find U by n?ticing that the upper bound of the distribution
of transactions must equal to [U(l + z—g)} w (ie. x =U and N =1).

We set ¢ = 9 to match the fraction of the population that has adopted the technology
by the end of 2021. This value implies that approximately 90% of the population adopts in
steady state. Lastly, we set 5y = 1.3 to match the path of technology adoption for the median
neighborhood in the data. We display the path of adopters starting at 7(0) = 0.001, that is,
0.1 percent of population is informed about SINPE Mobile at the time it was launched.

Figure 10: Path of Adopters (Short-Run and Long-Run)

Equilibrium path Equilibrium path
T T T T

—— Model
097/ —— Data

==
== )

0 1 2 3 4 5 6
time ¢ time ¢

(a) Model vs Data (b) Long-Run Path

Notes: Panel(a) compares the path of adopters in the model and in the data. The solid red line shows the
patterns of diffusion of the technology in the median neighborhood, where the percentile is calculated in the
last period of the sample using the share of individuals that had adopted the technology. The dashed red
lines show the 25" and 75" percentiles. Panel (b) shows the share of informed agents, I(t), the share of

adopters, N (t), and the levels of Z(¢) predicted by the model under our baseline calibration.

26We assume p =~ 0.

42



Panel (a) of Figure 10 compares the path of adoption in the model and in the data.
The solid red line indicates the diffusion of the technology in the median neighborhood and
the dashed lines represent the 25 and 75" percentiles. The figure shows that under our
baseline calibration, both the speed and the levels of adoption generated by the model are
consistent with those in the data. Panel (b) shows the path of I(t), N(t) and z(t). The
figure shows that most people are informed about the technology within the first 7 years.
In steady state, approximately 97.5% of the population know about the application. The
figure also shows the long-run level of N(¢). The model predicts that in steady state 90%
of the population living in the median neighborhood will adopt the application. Lastly, the
path of Z(t) indicates that, consistent with our empirical evidence, there is selection in the
model; agents that benefit the most from the technology adopt first. This can be seen by the
declining path of z(t).

Figure 11: Path of Adopters: Only Learning (Short-Run and Long-Run)

Equilibrium path Equilibrium path
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. . .
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time ¢ time ¢

(a) Model vs Data (b) Long-Run Path

Notes: Panel(a) compares the path of adopters in the model and in the data when 6,, = 0. The solid red
line shows the patterns of diffusion of the technology in the median neighborhood, where the percentile is
calculated in the last period of the sample using the share of individuals that had adopted the technology.
The dashed red lines show the 25" and 75" percentiles. Panel (b) shows the share of informed agents, I(t),
the share of adopters, N(¢), and the levels of Z(t) predicted by the model under our baseline calibration and
0, =0.

Figure 11 shows the performance of the model under our baseline calibration but with
0, = 0. It shows that, without strategic complementarities, the levels of adoption by the
end of 2021 (6 and a half years after the launch of SINPE) would be around 20%. Panel (b)
shows that the path of Z(¢) in the model with only learning is flat, which indicates that this

version of the model does not feature selection in the adoption of the technology as observed
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in the data.

Optimal Subsidy: Panel (a) of Figure 12 shows the optimal adoption path relative to the
path of adopters from the decentralized equilibrium. During the first four years after the
launch of the technology, the optimal level of adoption are similar to those of the equilibrium
without subsidy. The optimal path of adopters from the planning problem is higher than that
of the equilibrium. In fact, by the end of 2021, it is equal to the total number of informed
agents in the economy, 30 percentage points higher than the levels of adoptions observed in
the data. Panel (b) shows the path of the optimal subsidy. As the share of adopters increase,
so does the adoption externality. As a result, the optimal subsidy, which is the same across
agents, also increases over time. The optimal subsidy eventually pushes the economy to

universal adoption.

Figure 12: Planning Problem: Solution and Optimal Subsidy
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(a) Optimal Path of Adopters (b) Optimal Subsidy

Panel (a) shows the share of informed agents, I(t), the share of adopters in the decentralized model, N (t), and
the optimal levels of adoption, N(¢) (optimal), according to the solution of the planning problem. Panel (b)
shows the path of the optimal subsidy 6,,Z(t) and the flow benefit of the average adopter, Z(¢)(6p + 0, N(t)).

High Adoption Cost: Panel (a) of Figure 13 shows an example with a higher adoption cost
(i.e. ¢ =12) and a higher fraction of the population informed about the technology at launch.
It is motivated by the recent experience in El Salvador, where 70% of the population knew
about the payment application introduced by the government (i.e. Chivo Wallet) 7 months
after its initial launch.?” Panel (a) shows the paths of adopters N(t) in the decentralized

equilibrium. It shows that, when the adoption cost is larger, the equilibrium where no one

2TThe Salvadorean government also launched an app called “Chivo Wallet,” which allows users to digitally
trade both bitcoin and dollars without paying any transaction fees.
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adopts the technology is not ruled out. In this case, the optimal adoption path increases
gradually and takes more than 7 years to converge to the share of informed agents.

Panel (b) shows the same paths for a lower adoption cost (i.e ¢ = 10). The figure shows
that a large enough adoption subsidy can eliminate the no adoption equilibrium. Thus,
even if the optimal subsidy is not implemented, a permanent subsidy can in fact solve the

coordination failure and send the decentralized economy to the high adoption equilibrium.?®

Figure 13: Planning Problem: High Adoption Cost
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Panel (a) shows the share of informed agents, I(t), the share of adopters in the decentralized model, N (¢),
and the optimal levels of adoption, N(t) (optimal), according to the solution of the planning problem for
values of ¢ = 12 and 70% of the population informed 7 months after the launch of the technology. Panel (b)

shows the same variables for ¢ = 10 and 70% of the population informed 7 months after the initial launch.

10 Conclusion

Understanding the adoption process of a technology and the transition from low to high
adoption is challenging, especially in the presence of strategic complementarities. This paper
develops a new dynamic model of technology adoption which allows us to model this transition
leveraging tools form mean field game theory. The model provides a framework to characterize
the process of learning, generates slow adoption through a novel mechanism—waiting for

others to adopt—and allows us to derive predictions that can be tested empirically.

28The Salvadorean government did in fact implement a similar subsidy. As an incentive to adopt, citizens
who downloaded Chivo Wallet received a $30 bitcoin bonus from the government. However, our model
indicates that the subsidy was not large enough to rule out the no adoption equilibrium. More details about
the app and the implementation of the subsidy can be found in Alvarez, Argente and Van Patten (2022a).
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We also solve for the social planner’s problem. The planner in our setup controls the entire
distribution of adopters across time. The presence of strategic complementarities enrich the
problem and allow us to link our results to the “big push” literature, as they imply that
small subsidies can lead to large changes in adoption given the multiplicity of equilibrium.
We show that, in our framework, the optimal subsidy increases over time but it is flat, thus,
easily implementable.

Our application consists of analyzing electronic methods of payment, which are partic-
ularly relevant today and are undertaking a digital transformation. This revolution has
been echoed by a growing interest from monetary authorities to promote and develop digi-
tal payment platforms, both in developed and developing countries. Using individual- and
transaction-level data on SINPE, a national electronic payment system adopted by most of
the adult population in Costa Rica, along with extensive data on the networks of each user,
we document that strategic complementarities play an important role in the adoption of this
technology.

SINPE also provides a rich environment to calibrate our both the descentralized equilib-
rium and the planning problem in our model, which allows us to estimate, for instance, the
optimal time-varying adoption subsidy and the degree of selection into adoption across time.
These results have implications for the launch and implementation of payment technologies
with similar features such as CBDCs.

The methodology we develop can be useful for wide set of multidimensional dynamic
problems, and the model can be applied to studying any technology that features strategic
complementarities, learning, or both. Moreover, the setup is simple but can lead to interesting
extensions, for instance, a drift in the idiosyncratic benefit of adoption could be key to

understand other technologies with adoption costs that decrease or increase over time.
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APPENDIX

A Discretization and Computation of Equilibrium

In this section, we describe an algorithm to compute the equilibrium. It is based on finding
a fixed point of the finite difference approximation of the HBJ equation and the Kolmogorov
forward equation.

We define the discretization of the model as follows:

DEFINITION 2. A discretized version of the model is defined by positive integers I, J which
determine the time and space step sizes: Ay = %5 and A, = ;% Thust € T={A,(j— 1) :
j=1,...,J} and z(t) € X = {A,(: — 1) : ¢ = 1,...,I}. The reflecting BM is replaced
by a process with: x(t + A;) = z(t) £ A, each with probability ¢ = %("zf)’; (1 —vA,), and
z(t + Ay) = x(t) with probability 1 — 2¢ for 0 < x(t) < U. If z(t) = 0 or z(t) = U, then
z(t + Ay) = x(t), with prob. 1 — ¢, and z(t + Ay) = A,, or z(t + Ay) = U — A, with
probability ¢q. Agents die with probability vA,;, and use a discount factor (1 — A;r). The
period flow of those that adopted the technology is [0y + 0, N (t)] x(t)A;. Agents that die are
replaced by other whose z is drawn from a uniform discrete distribution with probabilities

A, /U for each z. For any 0 < A; < 1/(r 4 v), the value of J, and hence A, must be chosen

so that 0 < ¢ < 1/2. In this case the value functions v and a can be represented as a vector
on v € R™7 the distribution of non-adopters m € Rix‘], threshold path z : T — X, and the
path of the measure of adopters N : T — [0, 1]7. The initial condition is given by mg € ]Rfr

and the terminal value by vy € RL.

Next we derive and describe the decision problem in discrete time using HBJ, and later

derive and describe the discrete time version of the Kolmogorov forward equation.

A.1 Finite Difference computation of HJB for v,a given N

In this section we derive the finite difference approximation for a(z,t) given the path N =

{N;}1

= (O + 0,N,) + L | Gihd T 20 T iy ) Gy — Gy
pa’] T ( O+ J>+ 2 <A$)2 At
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fori=2,3,...,] —1land j =2,3,...,J — 1, which can be rearranged to give:

o2 A
a;j—1 = Az (0o + 0,N;) + Q(T;Q
Thus we define:

2 A1
P=5 a2 a=pna)

and write:

Clm;l = At xX; ((90 -+ OnNJ) + (1 — pAt) [pai,l’j + (1 — Zp)am + paiﬂ,j]

fort=2,3,...,—1,and j =2,1,J — 1, and

arj-1 = Ar w1 (0o + 0,N;) + (1 — pAy) [(1 = pay; + pag ]
a[,j,1 = At Tr (90 + ean) + (1 — pAt) [pajij + (1 — p)al?j]

for j =2,...,J — 1 and at the terminal time we impose:
a,g=a;pfori=1,2....1

If we require that p € (0,1) and 1 — 2p € (0, 1) then

A, T ~P*
VA, VT U

Y—_— =< A, = ——
U\/l—pAt U\/J—l—pT -1

We will use ar = a, i.e. the steady state a given N, as:
di = At X; (90 + QHNSS) + (1 — pAt) [pdi_l + (1 — 2}?)(1Z +pC~Li+1]
fori=2,3,...,1 —1 and

CNLI - At x1 (00 + gnNss> + (1 - PAt) [(]— - p)&l +pd2]
ar = Ayxy (0o + 0,Nss) + (1 — pAy) [par—1 + (1 — p)ay]

20

[air1; — 2055 + aimig] + aij — pAsas

(47)
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Now we set the equations for v using a. Following a similar derivation we get:
Vi j—1 = MaX {—C + Qi 5 , (1 - pAt) [pUi_Lj + (1 - 2]9)1]2',]' +pvi+17j]} (55)

fori=23,...,] —1,and j =2,1,J — 1, and

U1 = max{—c+ay;, (1= pAy) [(1 = p)or; + pvg,l} (56)
vrj1 =max{—c+ar;, (1= pA;)[pvr-1; + (1 = p)vr,]} (57)
for j =2,...,J — 1 and at the terminal time we impose:
Vi, g = Ui for ¢ = 1,2,...71

Given v and a we can compute T, which correspond to an J dimensional array as:

rj=ua foral j=1,2,...,J
We let X be the set:
X={{z;}y:a;=(i—1)A,eachi=1,2,...Jand j=1,2,...,J}
We will use vy = v, the steady state v given a as:
0 =max{—c+a;, (1 — pAy) [pti_1 + (1 — 2p)0; + piisq]} (58)
fori=2,3,...,1 —1 and

0y =max{—c+ay, (1 —pAy)[(1 —p)vy + poa]} (59)
oy =max{—c+ay, (1 —pAy) [por_1 + (1 —p)og]} (60)

A.2 Finite Difference approximation of KFE for m given x

In this section we derive the finite difference approximation for m(x,t) given the path z =

z;}._,. We let 4; the index for which z; = x;. for all j.
JJj=1 J J J
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2
ol g o 2| b Ty Mij = 7 fori=2,3,...,i;,—1

Ay 2 (A,)?
m;j+1 = 0 for ¢ :gj,...,j
and j =1,2,...,J. We can rewrite the first equation as:
O'2 At

Mij+1 = 2 (A,)?

mMH:Ofori:ij,...,[

1 .
[mi+17j — Qmid + mi,Lj] — I/At (mi,j — ﬁ) + mg 4 for i = 2, 3, ceey i — 1

Defining ¢ as

02 At 1
— 1
1= AR (= oA (61)
we can write it as:
1
myj = (1= vAy) (gmay + (1 = q)may) + vAi— (62)

U
1 _
miji1 = (1 —vA) (gmiy1j + (1 — 2q)m; ; + gmi—1 ;) + I/AtU fori=2,3,...,i; —1 (63)

m;j+1 = 0 for ¢ :gj,. . .,I (64)
and j =1,2,...,J,
m;1 = mg(xz) and ¢ = 1,2,...,[ (65)

Given m we can compute the corresponding NV, i.e.:

I
N;=1- (Z mij Ny — My ;N )2 — mij_I,jAm/2> for j=1,2,...,.J (66)
=1

This gives N (Z; my).

There is also the corresponding steady state version for m, given the index i

- - - 1
my = (1 —vAy) (gme + (1 — ¢)my) + VAtﬁ

1 .
m; = (1 —vA) (g + (1 —2q)m; + qmi—1) + VAtﬁ fori=2,3,...,¢%

m; =0 fori=1:%,...,1
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and
I
Ny=1-— (Z iy — 1Ay )2 — miss_lem)
=1

A.3 Computing Equilibrium Set

In this section we set up the fixed point given an initial condition mg and terminal value
functions vy = ¥, ar = @ and Dy = ap — vp for some steady state. Recall that F : [0,1]7 —
[0,1]” is defined as in equation (6). Thus, successive paths for N are indexed by k and

computed as
NFFL — ]—"(Nk;mO,DT) =N (X (Nk;DT) ;mg) for k=0,1,2,...

for some initial condition N°. To compute the equilibrium with the lowest path for N we
start with the initial condition N° = {0,0,...,0}. To compute the equilibrium with the
highest path for N we start with the initial condition N° = {1,1,...,1}. The convergence
of N* for large k is ensured by Tarski’s theorem.

In Figure A1 we compare the computation that follows from discretizing time and state
space with the one that comes from linearizing the model, i.e. our perturbation. Both
computations start with the same initial conditions. For this figure we take as terminal value
function the steady states values corresponding to the high adoption equilibrium, i.e. high
value of N4 and low value of Z4s. The common initial condition is one where mg(x) = m(x)/2.
We make two remarks about the initial condition. First, it amounts to starting the economy
with more agents with the technology than in the steady state (recall that m is the steady
state density of agents without the technology). Second, the shock (deviation from the steady
state) is not a small one, hence the local perturbation might lose accuracy in principle.

The figure contains four lines. The two top lines display the computation of the path of
N based on discretization (label as Global) with the one based on the perturbation (label as
local). The two bottom lines display the computation of the path of Z based on discretization
(label as Global) with the one based on the perturbation (label as local). It is apparent that
both methods gives very similar answer, i.e that the linearization is accurate for initial con-
ditions far away from the steady states. The other feature apparent with these computations

is that the steady state is stable even starting far away from the steady state.

23



Figure A1l: Global vs Local Solutions
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B Proofs

Proof. (of Proposition 1).
As a preliminary step we establish a correspondence and inequality between sample paths
of a Brownian Motion with reflected barriers 0 and U but with different initial conditions.

In particular, we can write x(t, &) for each sample path a:
x(tv a) = x(O, O[) +o [W(wa t) - W(w7 0)] + U(t, a) - d(ta OZ)

where w are the sample path of the standard Brownian Motion denoted by W, where (-, «)
and d(-,«) are increasing processes in each sample path, where u(s, «) only increases when
z(s,a) = 0, and where d(s, «) only increases when z(s,«) = U for s € [0,t]. Consider any
sample path « for which x(0,«) = z; with a corresponding sample path w for the standard
Brownian Motion W. Then there is a corresponding sample path o where z(0,a’) = x5,
and with w = ' for W, i.e. the two sample paths correspond to the same path of W. Thus,
these two sample paths occur with the same probability. From the last observation it follows
that we can represent the sample path « by the pair w, z(0), where z(0) = z(0, ). Finally,
if 1 < x9, comparing these two sample paths we obtain z(t,a’) > z(¢,«), i.e. we can pair
the sample paths that start with different initial conditions and that occur with the same
probability, and obtain that the one that starts at a higher value is (weakly) higher for all
future times, and strictly higher for ¢ small enough.

Now we turn to the main result. We proceed by contradiction, assuming that while it is
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optimal to adopt at (z1,t), it is not optimal to adopt for (xq,t) with x5 > x;. Without loss
of generality we assume that ¢ = 0. Our hypothesis imply that for all stopping times with

71 > 0 it is not convenient to wait if 2(0) = z1, and thus

—c+E [/OOO e Px(t) (0 + 0,N(t)) dt | z(0) = :1:1] > (67)

E [—cepﬁ + / T e (t) (B + 6N (1)) dt | 2(0) —xll .

T1

or equivalently that
—c+E {/Tl e z(t) (0g + 0,N(t))dt]| x(0) = 331] +cE e |z(0) =21] > 0.
0
Likewise, for x(0) = x5 there exists a 7* > 0 for which it is optimal to wait:
—c+E [/T e Pz(t) (0o + 0,N(t))dt]| x(0) = QZQ] +cE e |z(0) = 22] <0.
0

We use the characterization for the sample paths described above, to construct a stopping
time that only depends on the path w as: 7 (w, x1) = 7"(w, x5) for all w. Using this equality,
we immediately obtain E [e*™ | 2(0) = 21] = E [e ™" |2(0) = 25]|. Furthermore, using our

characterization above for each path w, we obtain:

E [ /0 " e u(t) (B + 0N (1)) dt | 2(0) = xl] <E [ /0 " et (t) (6 + 0N () dt | 2(0) = 25

*

_E [ /0 " e (t) (Bo + 0N (1)) dt | 2(0) = xz}

Using this strict inequality we get a contradiction with equation (67), and hence we establish
the desired result. [

Proof. (of Lemma 1).

The proof is readily obtained by using the definitions a (z,t) = 6pa (2U,t) and v (z,t) =
Oov (zU, t). Tt is straightforward to verify that these functions satisfy the partial differential
equations for a(z) and 0(z) for z € (0,1), including smooth pasting, value matching and

boundary conditions. [

Proof. (of Proposition 2).
For this proof we set up the problem as a stopping time problem. We first prove a useful
result in Lemma 4, showing that 7(N’) < 7(N) if N’ > N. To convert the result on the
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monotonicity of the stopping times, into a result of the threshold z, we note that the optimal
decision rule is of the threshold type, as established in Proposition 1. We also show that
exactly the same argument holds for the monotonicity with respect to 6. These results allow
us to apply Topkis’s (1978) theorem, which immediately establishes the proposition’s result.

Next we set up the problem in terms of stopping times, and then state and prove Lemma 4.

O

Decision problem as stopping times. Fix zy € [0,U] and ¢ty € [0,7]. Let N €
C([to,T]) = {N : [to,T] — [0,1]} and 7 denote a stopping time. Let © denote the sam-
ple paths that start at time ¢ty with z(¢y) = zo. A set L% = {7 : Q — [to,T]} is a lattice
since min{7y, 72} and max{, 72} are stopping times.

Let w € Q be a sample path that corresponds to a continuation of (zg,%y) with measure
p(+|zo, to). We denote by z(-,w) : [to, T] — [0, U] the sample path of the process for x that

starts at x(t) = xy. Then the objective function can be written as

F(r, N: 2, 0) :/f(T(w),x(-,w),N)u(dw\xo,to)

where
T
f(r,z(-,w), N;xzo, tg) = [/ e Px(t,w) [0 + 0, N ()| dt —e "¢

where F' : L' x C([tg, T]) — R. We have the following important lemma:

LEMMA 4. Let 6 = (00,60,) > 0 and fix (zg,%y). We establish three properties of
F(7,N;x0,t9): (i) it is submodular in 7; (ii) it has decreasing differences in (7, N); (iii) it

has decreasing differences in (7, 6).

Proof. (of Lemma 4). Result (i): Submodularity in 7 follows because F is additive across
sample paths for all 7 and 7. We omit xg, ty to simplify the notation. Fixing N we want to

show:

F(max{r,7'},N) — F(r,N) < F(7',N) — F(min{r, 7'}, N)

which follows because for each sample path w we have:
f(maX{T7 T/}v N) - f(Ta N) < f(Tla N) - f(min{Tv T/}a N)

which holds since: 0 = f(max{r, 7'}, N) — f(r,N) — f(7', N) + f(min{r, 7'}, N).
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Result (ii): We prove the submodularity of F', namely that given 7" > 7 and N’ > N we
have

F(r',N")— F(r,N') < F(r',N) — F(1,N)

To this end consider 7/(w) > 7(w) and compute:

F(«',N) - F(r,N) = / (F(r', N) = F(r, N)) pu(do)
and for each w

T

F(F . N,w) — f(r, N,w) = /

!

e P [0y + 0, N ()] z(t,w)dt — e " ¢

T

_ ( / L By 4 BN (0] (t, )l — a/%)

/

__ / e [0 + 0N (1) 2(t, w)dt — 7 ¢+ e

Thus, for all N'(¢) > N(t) and all ¢

(f(Tl7N/7w) _f(TvN/7w)) _(f(T/7N7w)_f(T=N7w>)

! !

_ / e [y 4+ 0N (1)) 2t w)dt + / " e [0 + 0N (1)) a(t, w)dt

vy / " e IN(E) — N0 (. )t < 0
Thus

()

(w)

F(r',N")—F(r,N)—(F(r',N)—F(r,N)) = —Hn/ (/ e " [N'(t) — N(t)] x(t, w)dt) p(dw) <0

Result (iii): Following the same steps followed in (ii) assuming ' > 6 gives:

(W)

F(+.0)—F(r,0)—(F(<,0)— F(r,0)) — — / ( /

O

e P[0y — o) + (0, — 0,)N(t)] x(t,w)dt) p(dw) <0
(w)

Proof. (of Proposition 3) The fraction of agents that have not adopted at time ¢ can be
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written as

2(t) U v, gt
M (t) E/ m(z,t)dz :/ mo(x)P(x,O,t)dx+/ ﬁ/ P(z,s,t)dsdx
0 0 0 0

where
P(z,s,t) = Pr(X(r) < z(r), for all 7 € [s,t] | X(5) = z] e =% (68)

where X (-) is a Brownian motion with reflecting barriers in [0,U]. Thus P(z,s,t) is the
fraction of agents that at time s have X(s) = z, survive until ¢, and also have had X (r)
below the threshold z(r) at all times r € [s,t]. The first term in equation (68) is the fraction
of those that have not adopted at in the initial distribution, and still have not adopted, and
survive, at time ¢. The second term keeps tract of those cohort that have died at time s, and
replaced by new agents, and themselves survive and not adopt up to time t.

Consider two paths ' > Z and the corresponding probabilities and measure of non-
adopters P'(x,s,t) and M'(t) computed with #’, and P(z,s,t) and M(t) computed with Z.
The set of events {X(r) < z(r), for all » € [s,t]} is included in the set of events {X(r) <
z'(r), for all r € [s,t]}, since Z(r) < Z'(r), and hence P'(z,s,t) > P(x,s,t). Thus M'(t) >
M(t). Since N'(t) = 1 — M'(t) and N(t) = 1 — M(t), obtaining the desired result that
N'(t) < N(t).

The monotonicity with respect to mg follows immediately, since fOU mo(z)P(z,0,t)dz is
increasing in mg because P(x,0,t) is non-negative.

U]

Proof. (of Theorem 1) The proof uses Tarski’s fixed point theorem for the function F as
defined in equation (6). We restrict attention to the discrete time, discrete state version of
the model so that we can we apply Tarski in a complete lattice.

We note that {N : {0,A,,..., T} — [0,1]} = [0,1]7 where J is the integer that defines
A;. This set is a complete lattice. This function is monotone by virtue of Proposition 2 and
Proposition 3. Then, Tarski’s fixed point theorem implies that the set of fixed points is a
lattice.

The comparative static result follows from the properties of the mapping X and N es-

tablished in Proposition 2 and Proposition 3. [

Proof. (of Proposition 4) If an equilibrium without adoption exists, then N(t) = N(0)e ",

and hence if someone will adopt, it will adopt at time ¢ = 0. Moreover, if someone will adopt
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it will be the one with = U. Thus, we compute the value of N such that:
c=E [/ e Px(t) [0o + 0,N(t)] dt|z(0) = U]
0
_ GE [ / (t)e Pt (0) = U} +0,N(0)E [ / 2B TGt (0) = U
0 0

We note that a(z;q) = E [ [} z(t)e~?dt|z(0) = z] solves the o.d.e. ga(z) =1+ a"(z) with
boundary conditions a (O) =a (U) = 0. The solution of this o.d.e. is:

a(x;q) = é [z + A" + Ape™ ]
- 1 (1—6*”[]) - 1 (1—6’7U) _
Al = Em, AQ = Em and n = \/2(]/0'2

Evaluating a(z;q) at x = U we get:

WU q) = 1 U coth(nU) N csch(nU)
q n Ui

Using this in the expression for N we obtain the desired expression. []

Proof. (of Proposition 5) First note that z = U is a (non-interior) steady state if, in case
nobody adopts (N = 0), then those with x = U find it optimal not to adopt, which is
equivalent to 6yU < pc.

An interior steady state is the zero of ¢(z) = (6y + 0,)x — (pc + 26,,/U) which belongs
o (0,U). Note that ¢(0) = —pc < 0. In case (i), we have q(U) = 6yU — pc > 0. Thus there
is only one interior solution belonging to (0,U). In case (ii), we have ¢(U) = 6,U — pc < 0.
In this case, since ¢(x) is quadratic it can have zero, one, or two solutions. Note that fixing
an x we have three properties: (1) dq(z)/00,, = (1 —z/U) > 0if z € (0,U), (2) 6, =0
then, ¢(z) = 20y — pc = U (6o /U — pc/U) < U (6 — pc/U) < 0, where the last inequality
holds in case (ii), and (3) that for large enough 6,, then ¢(z) = 6yz — pc + 260,(1 —x/U) >0
for z € (0,U). Hence, we can find a 6 such that for 6,, € [0, 6*) there is no interior root, for

0, = 07 there is exactly one interior root, and for ,, > 0 there are two interior roots. [J

Proof. (of Lemma 2) The monotonicity of X, with respect to the parameters = (0o +
0,N)/p is established in Appendix C.1. It is obtained by solving the o.d.e. for the value
functions, and using the boundary conditions. It is clear that the optimal threshold, fixing n,
solves an implicit equation 1 (yZss) = 1¢/0s, where the function 1 is derived in Appendix C.1.

This function is strictly increasing, and satisfies ¢(0) = 0. Thus Xy, is strictly decreasing in
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0,, and strictly increasing in c. A first order approximation of v gives the expansion used in

the lemma. [

Proof. (of Lemma 3) That N is decreasing in Z follows immediately since tanh(z) is, for
positive z, concave and has tanh'(0) = 1. Thus N (Z) = (=1 + tanh(zv)) < 0 if z > 0.

That N, is strictly decreasing in ~ follows from differentiating tanh(z~)/y with re-
spect to . This derivative is proportional to —(tanh(z+y) — Zvysech?®(Zv)) = —(tanh(zy) —
Ty tanh’(Z7)) < 0, where we used that tanh(z) is strictly concave for z > 0. [J

Proof. (of Proposition 6). In the deterministic case, i.e. when o = 0, there are at most two
interior steady states (the case we focus on). To simplify the notation let N°(Zy,) = X' (Zss)

and N%(Zs,) = Nys(Zss). In each of the steady states we write
N (#(e)) = N° (#(c), ©) (69)

where j = {H, L} (for high and low adoption, with z/ < zL).

The functions N® and N° and their derivatives are continuous functions of Z, o, ¢, 6y. In
each of the steady states the functions N* and N° have strictly different slopes. Some analysis
shows that the functions N*, N° intersect twice, and the derivative of N* — N° with respect
to T, is positive when the curves intersect at zL and negative when the curves intersect at
the L. We summarize this by writing N2(z) — N2(z%) > 0 while the derivative is negative
at 7L,

Note that ¢ does not enter in N, Differentiating equation (69) with respect to c:

and again using the properties of each steady state:
ozl . ozk,
dc dc
Following exactly the same steps we get:
ozk, . ozl
00y 00y
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C Solution of the Steady State Problem

C.1 Solution for a(z) and o(x)
The solution to a is of the form:

00 + enNss
x—
P

+ Alem + A2€77]z

0o + 0, N
+1(Ay = Ag) = ———=
p p

+n(Ae" — Age™)

Thus, given 6y + 6, Ny, the constants (Aj, Ay) are the solution of two linear equations.

Moreover, the values of A;, A, are proportional to f,, given by

90 + enNss
p

O, =n(Ay — A)) = n(Aze™" — Ae™)
Let A; = A;/0.,, we can write:
1 =n(Ay — A)) = n(Ase™ — Aje)
which has solution:

1 (1—eY) 1 (1—em)

ATy T e —an)

The solution for ¢ for = € [0, Zs] is of the form
0(x) = B1e™ + Boe "
Given the solution for a, then By, B, T4 solve:

0= U(Bl — BQ)
z(Tys) = n(B1e™*s — Boe 7*)

a(Zss) — ¢ = B1e™ + Bae e
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Thus, using the first equation By = B; = B and taking the ratio of these equations:

Q

(Tgs) — C 1 eM%ss | e NTss

Gy (Tss) 1 (enFss — e~nTss)
Replacing the expressions for a(zss) and @'(Zss), we obtain:

*TSS —+ Alenfss + A26_7757$s _ C/QSS B 1 enjss + e_ni'ss

]_ + 77 (Aleniss — /_126_775355) - 77 (677'@85 _ efn-iss)

Note that this is one equation for Z,, as a function of 8, (recall that Ay, Ay are known

constants). The last expression can be written as

6775255 + e_ni.ss

(677i'ss — e_njss)

(1 Ty (Alen:zss _ AQW@S)) _ .

Ss

77‘7_:58 + nAIenfss + 77121267775233 _

which gives equation (19) in the main text.

Letting y = nzss and defining ¢ (y) we can write

_ _ Ve _ _
Wly) = y+m (Are? + Ape™) — ﬁ (147 (Ae? = Aye ™))
=1
958

We can approximate the left hand side around Z,, = 0, which corresponds to ¢ = 0. Using

that nAy, = nA; + 1, we have the following properties.

1. 9(0)=0,%(y)>0ify >0

2. ¥/(y) = S 50 U/(0) = §,¢/(00) = 1, and ¢"(y) > 0,

3. U(y) =4+ % + o(y*) and lim, Y-y —

Now we use ¢ to solve for Ty, = x(1,¢/0s) i.e. 25 = ¥(nx(n,c/0s)). Tss is the unique

0s
% = 7=, which always exists. For fixed 0 < 7 < oo and small ¢ using the first

order approximation:

solution of

Y =NTss = QE Or Tgg = 2§i
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since 1 = ‘/%7 the option value for a fixed 6 is given by:

m X (7, 0/0_88>

—— =2
e=0 x(00, ¢/bss)

For fixed 0 < 7 < oo and small ¢, using the third order approximation y3+12y = & = =

1/3 1/3
-~ 1 1A+ 1A2+123 +1 1. 1A2+123
Tss = — | =K —K e — | =k —\/ =R e
g \2 4 27 n\2 4 27

_1 (1>”3 (s verme) "« (5 vires) ]

n \ 2

or:

For the case when o is small (i.e. 7 is large), let S(y) = y — ¥(y) + 1 and recall that
lim, o S(y) = 0. Then, using the definitions of y and ¢ (y), this implies

V2
lim Y27 X | oo, )L %) =o
o0 0 Oss Oss  /2p

Alternatively, note that zs, — \/%7) is the derivative of % with respect to o evaluated at

oc=0.

C.2 Solution for m(x)

We can write the solution of the KFE as the sum the two homogeneous and the particular

solution my, given T, i.e.
m(x) = Cr1e™ + Coe™ 7 4+ my(x)

where v = y/2v/02. The solution is

o (77 + =)
=—|1- — -
m(iU) U (eyxss + e—'yxss>

for x € [0, 4]
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Finally, we want to compute:

Tss Tss 1 Y —YT
1—Nss=/ m(x)dx:/ Lo e 1,
0 0 U (673335 —+ 6_7-1’3.9)

This gives another equation for Z,, as function of 6.

D Perturbation of the equilibrium conditions

We study the evolution of the MFG where the initial condition is given by a small perturbation

e of the steady state distribution:
mo(z) = m(z) + ew(z) . (70)

We consider an equilibrium with {Z(¢,€), N(t,€), D(z,t,€), m(z,t,€)}. We will linearize this
equilibrium with respect to e and evaluate it at e = 0. For all ¢ € [0,T], we denote these

derivatives as follows:

0
p(l’, t) = —m(m, t 6)
Oe 0
0
d(xz,t) = —D(x,t,€)
Oe 0
0
n(t) = —N(t,e)
86 e=0
0
it = 251,
e=0

D.1 Linearization and Solution of the KB Equation

We differentiate D(z,t,€) with respect to € at each (x,t) to obtain d(x,t) which solves the
following p.d.e

pd(x,t) = x0,n(t) + %Qdm(x, t) + di(z,t) (71)

64



for x € [0,Z) and t € [0,7]. The boundary conditions are obtained by differentiating the

boundaries in equation (10) with respect to e. This gives:
0

Do (Zss)y(t) + du(Zss, t) = 0 (72)
0

for t € [0, 7] and d(z,T) = 0 for x € [0, Zs]. Note that equation (72) defines y(t) and that
Dwx(fss) - &mac(jss) - 'a"cx(fss) < 0.
Taking the derivative of the solution for d(z,t) in equation (71) with respect to x and

combining it with equation (72) we find

y(t) = [)e—n)/t G(t —t)n(r)dr (73)

Tx (fss

where G(s) = 72 e ¥® > 0 for s > 0, ¢ = p + % (%)2, and ¢; = 2 (1 - %)
An important property of this is that, since G(s) > 0 and D,,(Zss) < 0, an increase in future
adoption of the technology (i.e. future values of n(7) > 0 for 7 > t), then the threshold
for adoption is smaller (i.e. more people will adopt today). Next we provide details of the

solution of the p.d.e. for d. We have

LEMMA 5. The solution for the KBE equation for d, satisfying the p.d.e. in equation (71),

and the boundary conditions in equation (72), is given by
d(x,t) = Z o;(x)d; (t) for x € [0, %] and t € [0,T]
5=0

where for all j = 1,2, ... we have:

o;(x) = sin ((% +j) . (1 _ f)) for € [0, ]

d;(t) = /T e Tz (7)dr for t € [0, 7]
s ) = g NPT gy 2Tss ~ cos(mj) -
Z;(t) = bun(t) s 00 Onn(t) T (1 P %)) for t € [0,

2 1 . 2
=+ .
where ¢; = p + % (M) and d;(T) =0

‘fSS

where (p;, h) = fo‘%“ h(z)p;j(x)dz. The proof can be done by verifying that the equation
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holds at the boundaries, and that for ¢ > 0 the p.d.e in equation (71) holds in the interior
1L 2
since 0,0, (x) = — (ﬂ(g—:)> ©;(x), and dyd,(t) = ;d;(t)—2;(t) fort € [0, T] and j = 1,2, ...,

and since the {¢;(x)} form an orthogonal basis for functions. Note finally that the boundary
holds at ¢ = 0 for x € [0, Zs,, and that the derivative of the solution for d, used to solve for

y in equation (72), is
d.(z = / Zc =Dn(s)ds  where 052(1—M)
! * ’ m(j +3)

D.2 Linearization and Solution of the KF Equation

We differentiate the KFE for m(z,t, €) with respect to € at each (z,t) to obtain:
o2

_pxx(x> t) - I/p(l’, t) (74>

pt(377t) = 9

for z € [0, Zss) and ¢ € [0, T7.
Differentiating the boundary conditions m(z(t, €),t,¢) = 0 and m, (0, ¢, €) = 0 with respect

to € we get

My (Tss)Y(t) + p(Tss, t) =0 (75)
p(0,8) =0

The initial condition comes from differentiating mg(z) with respect to €

p(0,2) = w(x) (76)

The solution for p satisfies the p.d.e given in equation (74), its boundary conditions in

equation (75), and the initial condition in equation (76). We have

LEMMA 6. The solution for the KFE equation for p, satisfying the p.d.e given in equa-

tion (74), the boundary conditions in equation (75), and the initial condition in equation (76),

is given by
plx,t) = Z 0;i(z)p;(t) +r(t) for x € [0, %] and ¢t € [0, T
r(t) = — My (Tss) y(t) for t € [0,7T]
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where for all j = 1,2, ... we have:

ﬁj(t) = ﬁj(())e_’”t + /Ot 6_‘Lj(t_7)qu(T)dT for t € [O,T]
3(0) = —((8) + wr(t) f;;ff,jj) for t € [0.7]
_sm((; Vel 2)) S
where p;(0) = {e; @J’—%)( ) and = u+%2 (@)2

where (p;, h) = Oz“ h(x)p;(x)dz. The proof can be done by verifying that the equations
hold at the boundaries, that for ¢ > 0 the p.d.e holds in the interior since

p;(t) = —p;p;(t) + () fort €[0,T] and j =1,2, ...

and since {¢;(z)} form an orthogonal bases for functions, and finally that the boundary
holds at t = 0 for = € [0, Z4], and it holds at = = T, for every 0 <t < T

Given p(x,t) we can compute n(t) as:

(1)dr (77)

|
3
=)
=
+
S
=
@
q
o
O\:‘_
N
=
|
2
<

m(ii)) 2 o - A
where J(s) = >3 e 4 with p; = v+ 50° (%) and no(t) = - Y72, ﬂéjj)%e_“ﬂ.

D.3 Equilibrium in the Perturbed MFG

Recall that from equation (73), y(t) is equal to

On

y(t) = m/t G(t —t)n(r)dr

where G(s) = 377 cje** for s > 0. From equation (77) we also know that n(t) is
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n(t) = no(t) + M /Ot J(t —1)y(r)dr

xSS

where J(s) = > 72 ge % and no(t) = — 372 W(“jr )ﬁe #it, Combining equation (73)

and equation (77) we get

n(t) = +@x35// (t —7)G(s — 7)n(s)dsdr
= ng(t) + O(Zss) /0 /Omm{”} J(t —7)G(s — 7)n(s)dsdr
=no(t) + O(Zss) /OT K(t,s)n(s)ds

where K(t, s) fomm{s & J(t —7)G(s — 7)dr and O(Zss) = sz(gs—s(c;% Using the definitions
of J(s) and G(s) we find

min{s,t}
/ J({t—7)G(s —T)dr
0

min{s,t} S
=0

min{s,t}
cje—#it—sz / it 1
0

[e=]

I
WE
hE

0 j=0

<.
I

I
™
WE

Il
o

(i) minft.s} _ 1
—pit—pss | €
c;e Y [ ]

i +

Il
=)

=0 j

0o 0o _8—(Hi+7/)]')t
Note that K(t, t) = Zi:o ijo Cj [UT} .
To calculate the Lipschitz bound Lip = sup;epo 1 fOT |K(t,s)|ds, let

T
/fz‘j(t) = / e_ﬂit_sz(e(ﬂi+¢j)min{tvs} _ 1)
0

so that



Computing the integrals in r;;(t) we get

¢ T T
Kij(t) :/ e HitTHs g —|—/ e VitTvisds —/ e HitVisds
0 ¢ 0

e Hit(erit — 1) N eVit(e=¥il —e=vit)  emrit(e=¥iT — 1)

2% —; —1;
- (%f’ ) e e

and as T — oo

Kij(t) = (@Dz;;ﬂz) (1—e")

< vy + P
Vi

Using that [, |K(t,s)|ds < [°|K(t,s)|ds we get

TK 00 o0 /ﬂ]
/0 (1, 5)ds gz. +¢j

= ZZ uz@/}]

=0 j=0

() ()

We can use the definitions of p;, ¥;, and ¢; to further simplify this expression. First note
that

< 272, 1

i=0 (ﬂ-(é + ]))
_ 75
= ;
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where we obtain the bound for v = 0. Notice also that

0 ) _ cos(mj)
Sr=y (1= 55)
' - 1 9 7T(1+j) 2

(

l)
™3

IN

,2 (o)
B 4z,
- 2
o
Jj=0
2
— :ESS
o2

where the bound is obtained for p = 0. Putting these together we find the Lipschitz bound

Lip, = su / K(t,s)ds <
Pr = teori)“] (Z Mz) (Z >

1=0

_9 2
_ xss

0-2

A sufficient condition for the existence and uniqueness of the equilibrium IRF, i.e. of the

uniqueness and existence of a solution to equation (27) is that |O(Zs,)|Lipg < 1. To establish
a bound for ©(Zs), in terms of the fundamental model parameters, that ensures existence

and uniqueness, we use the definition of O(Z,) and the Lipschitz bound as follows:

o) (%) = (D—)H< ‘)
D, ( s) ?
O, (V55 )? tanh(yZss)
o7 (90 to, <1 wvmss 4 %)) VT sy — PCY

where we obtained D,,(Z,s) evaluating equation (9) at Zss and using equation (20), and we

calculate 77, (Zs) from m(z) = & (1 — —CZZ;}E%QJ
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E A “Pure” Learning Model

In this section, we develop a model with random diffusion of the technology across agents.
Agents can be either uninformed about the technology, or informed about it. If they are
informed, they can decide to pay a cost ¢ and adopt it. Newborn agents start as uninformed,
and become informed by randomly matching with informed agents. Once an agent adopts
the technology her flow benefit depends on the idiosyncratic value of the random variable z,
but not on the size of the network, i.e. #,, = 0.

The main conclusions are that the pure learning model differs from the model with strate-

gic complementarity in that:

1. it has a unique equilibrium, and a unique stable steady state,

2. it has a logistic S shape adoption profile, provided the initial share of uninformed is

small enough,

3. the use of the technology for those that adopt depends only on the cohort, and not the

size of the network,

4. the equilibrium is constrained efficient: the optimal subsidy to use the technology is

Zero.

Learning set up. We follow the canonical notation for an “SIR” model and assume that the
population, normalized to have measure 1, is split between the uninformed, whose measure
we denote by S(t), and the informed, which have measure I(t), so that 1(¢)+S5(t) = 1. Those
that are informed can be split in two groups, those that have adopted the technology, with
measure N (t), and those informed that have not adopted M (t), so that I(t) = M (t) + N(t).

The main assumption about learning about the technology is that agents do not need to
use the technology to learn about it. In particular, agents that know about the technology
will randomly meet agents that don’t and transmit the information in such way. Recall that
among the I(t) informed agents, only a N(t) have adopted, and M (t) are informed but have
decided not to adopt.

Optimal Adoption. Now we turn to the decision of agents. The uninformed agents have
no decision to make. The decision problem of those that are informed is similar to the steady
state problem in our model with strategic complementarities.

The value of an agent that already has adopted the technology is

0.2

pa(x) = Oz + 7am(x) for z € [0, U]
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with boundaries a,(0) = a,(U) = 0 The value function for an agent that is informed is:
o2
pv(x) = max {?vm(x) , pla(z) — c)}
with time invariant threshold # < U solving, and boundary at zero:

0(Z) = a,(Z) and v(Z) = a(Z) — ¢ and v,(0) =0

The solution of v and a are identical to the steady state solutions of the baseline model
v and a where we set #,, = 0. Likewise the solution for Z is the same as the value T, for the
model with 6,, = 0.

Evolution of distributions. Now we turn to the description of the distribution of agents
across states. We let s(x,t) the density of those uninformed at ¢ with x, and m(x,t) the
density of those informed at ¢ with  and that have not adopted yet. First we characterize

g which satisfies:

2

si(z,t) = %sm(x,t) — (v +B(S(t))) s(x, t) + Z/% all £ >0 and x € [0, U]

with boundary conditions given by reflections at the boundary, i.e. 0 = s,(0,t) = s,(U, ) all

t > 0 and initial condition independent of z:
s(z,0) = sg all x € [0, U]

In this case S(t) is the total measure of uninformed agents at time ¢, and §(-) is a function

that gives the probability per uninformed of becoming informed:

U
S(t) = / s(x,t)dx
0
We assume that §(-) is given by
B(S) = By (1 —S) = Py for some constant Fy > v > 0

The interpretation is that each agent has [y meeting per unit of time, and that a fraction

1 — S are with those informed of the technology.
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We will return to solve for S and I below. Now we turn to the law of motion for m is:
2
my(z,t) = %mm(x,t) + B(S(t))s(x,t) — vm(z,t) all t > 0 and = € [0, ]

m(z,t) =0allt >0 and z € [z,U]

Continuity of m implies that m(z,t) = 0 all t > 0. The reflecting barrier of x at zero implies
0 =m,(0,t) for all £ > 0.

Comparing with the baseline model with constant z, the evolution of the density m has
one main difference. Instead of having the constant inflow v/U, it has a time varying, and
smaller, inflow 3(S(t))s(z,t). This smaller inflow, everything else the same, can substantially
retard the adoption.

We define the total number that are uninformed as:
M(t) = / m(x,t)dr < I(t) =1— 5(t)
0

The initial condition that the density of those that have not adopted is smaller than the
density of those that are informed, i.e.. 0 < M(0) < I(0) all z € [0,U]. Note that by

integrating across x and using the boundary conditions:

—vM(t)allt >0 and z € [0, 7]

Sl &

M, (t) = /Or my(x,t)de = %me(:c,t) + B(S())S(t)

We are interested in: N(t) =1 — S(t) — M(t), which using the previous equations gives:

0.2

Ni(t) = =Zoma(3,1) — vN (1) + B(S()S() (1 - %) for all £ > 0
with initial condition N(0) = (1 — £) I(0).
Note that since m(x,t) > 0 for x < z and m(z,t) = 0, then m,(z,t) < 0. The next

proposition rewrite this expression which it is useful to interpret the determinants of the

dynamics of N(t).

PROPOSITION 14.  Assume that so(x) = Sp/U for all x € [0, U], and that 5(S) = o(1—.9).
Then we can write N(t) as function of path /(t) and m(z,t) and the threshold z:

N(t) = I(t) (1 - [‘“}) + /0 vt l—“—mz(:z,f)] dr (78)

The expression in the right hand side of N(¢) in Proposition 14 has the following interpre-
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tation. The term I(¢) (1 — £) has the fraction of those informed with values of  above the
threshold z. The second term takes into account the past flows of agents that were informed,

whose value of x went from below T to higher than Z.

Solving for path of N(t),M(t),I(t),S(t) given Z. The solution is recursive: we first
solve for S(t) and I(t), and then using the path of I(¢) we solve for N(¢). This is done in the

next two propositions.

PROPOSITION 15.  Assume that 3(S) = fo(1 — ) for Sy > v. Furthermore assume that
so(x) = Sp/U for all x € [0,U]. For a given I(0) we have that the unique solution of

i(t) = BoI(t) [(1 - é) - I(t)}

is given by

v e(Bo—v)t
[(t):l—S(t)z(l——) = (79)

1—2
fo s — 1 4 elomvit

Thus, if 0 < 1(0) < 1 — 4, then I(f) converges monotonically to I, =1 — 2= € (0,1). If
I(0) < I, then

0 isconvex int ift < log((lssﬁ_()ljg))/l(o)) or I(t) < 1—53
is concave in t  if t > 10g((155/;01_((l)/))/1(0)) or I(t) > 17 .

As shown in Proposition 15, when I(0) is small, then I(t) displays a “logistic” type of
path of technology adoption, but 7(¢) is only the population that can adopt. We characterize

the number of adopters in the next proposition.

PROPOSITION 16. Assume that so(x) = Sp/U for all x € [0,U]. Take the path I(¢) as
given, and the optimal threshold Z < U. Then the unique solution of m(z,t) is:

o0

m(z,t) = Zgoj(x)l;j(t) where ¢;(z) = sin ((] + ) (1 — %))
Bj(t) = ﬂ%—f—%) (e”jt% + Bo /Ot ef“j(t’T)I(T) (1U_ I(T>)d7'> and p; =v+ ((j + %)%)2
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and thus N(t) = I(t) — M(t) is given by:

Nt)=1(t)—¢& (H(t)](()) + ﬁo/o H(t—7)I(1)(1—1(7)) dT) where
o0 2 o
H(z)= wje” "% with w; = —————— > 0 and w;j =1.
= ETESULAPS

Combining the expression for N(t) in Proposition 16 with the path of I(t) solved for
in Proposition 15 we obtain an explicit solution to N(¢). Next we analyze the invariant
distribution in this model, which is the value at which it tends as t — oo. We denote m

: : : A~ a? = vV\Vv X -
the density for m which satisfies: vin(z) = G, (z) +6(1 — 4) 5 ¢ for all z € [0,2] and
m.(Z) = 0 and m(Z) = 0. The next proposition gives the solution for m, as well as the

steady state number of adopters Ng;.

PropPOSITION 17.  Assume that so(x) = So/U for all x € [0,U], that z < U, p(5) =
Bo(1 —.5), and that Sy > v > 0. Then the steady state density m is given by:

_ cosh(qyz)

m(z) = (1-— %)% (1 ) where v = v2v/0 and thus

(1 - M)] (30)

YT

cosh(~)

s

Ny = I, — /:m(x)dx —(1-2) {1 -

It is interesting to see that even if I(0) = I,s = 1— £, then N(0) < N, and convergence
will take time. In words, even if all agents are informed about the technology it takes time for
the selection process to yield N,. In particular equation (80) implies that N > Igs(1 — %),
since among the adopters there are agents who had x > z in the past and currently have

r <z
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Figure E2: Equilibrium paths of N and I of Pure Learning Model

Equilibrium paths of N(t) & I(t) for different 1(0) with 3, =2
T T T T

a

of Population

— N (@), 1(0) = I,

action

— N(),1(0) < I,

=== 1(1),1(0) = I | A

—I(t),1(0) < I, | |

T

Equilibrium paths of N(t) & I(t) for different 1(0) with 4, =10

of Population

action

——-N().1(0) = L.
e I(t),1(0) =L, | -
— N(),1(0) < I,
—I(),1(0) < L. | |

Slow learning, Sy = 2. Fast Learning, 5y = 10.

Figure E2 illustrates the main results of this section. The left and right panel differ in
the value of (§y, with the left panel with a slow learning 8y = 2, and the right panel a high
value, fp = 10. In each panel we consider two initial condition for I(0): one with I(0) = I
(dotted lines), and with 1(0) = I,s/100 (solid lines). The remaining parameters are all the
same. The paths for N are in blue, and the ones for A are in red. Focusing first in the
slow learning case (left panel), note that when 7(0) is small, so that early on adoption is
restricted by the information about the technology, the fraction that adopt N(t) follows an
approximate logistic path, as explained above. Instead, if 1(0) = I, then the path of N(t)
is concave in time, and starts at a high value at ¢ = 0. In the case of fast learning, i.e. in
the right panel, the same dynamics of learning are also present, but in a much abbreviated

period of time.

Optimality of Equilibrium. The equilibrium path is constrained efficient. In particular,
if the planner can only give a subsidy to those that use the technology, then the optimal
subsidy is zero. This is because, given our assumptions about learning, such subsidy does
not affect the fraction of people that learn about the application. Furthermore, since we
assume that there is no complementary in the use of the technology, the individual decision

will coincide with the planner decision for .
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E.1 Proofs for the learning model
Proof. (Proposition 14) We start by integrating the differential equation for N to obtain

~m(@,s) + 8563 (1- )] as

Using that 1(t) = 8(S(t))S(t) — vI(t), so
/ 9 (5 (8)) S (s)ds = / e f(1)ds + / I (1) ds

Integrating by parts:
t t t
/ e "=95(S(s5))S(s)ds = I(t) — I(0)e ™ / ve "9 (s)ds +/ e "IuI(t)ds
0 0 0
=I(t) — I(0)e™*
Thus:
~ t 0.2 T
N(t)=e"(1-£)1(0) + / e V(=9 { ?mz(x, 3)] ds + [1(t) — 1(0)e "] (1 - 5)
0
= t
= I(t) ( — 5) +/O e~(t=9) [ me(x,s)l ds
0
Proof. (of Proposition 15) Integrating the p.d.e. for g we get:
foU X

%2 / Swa(, t)dz — (v + B(S(1))) / s, t)dw +v=0

U
Sy (t) E/O si(x,t)dr =

and using its boundary conditions at x =0 and © = U:

Si(t)y=—(w+p(S())S(t)+vallt>0

with initial condition:
5(0) = Sy for some constant 0 < Sp=1—1(0) <1
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Since we assume that so(x) is constant across x, i.e. if
S
so(x) = UO all z € [0, U]
then the solution satisfies
S(t
s(z,t) = % all £ > 0 for all x € [0, U]

Thus we obtain

S'==w+H(1-9)S+v=(1-9)(v-755)
=v(l1-29) (1—%)

It is convenient to solve for the path of I, the fraction of agents informed of the technology,
I(t)+ S(t) =1 for all t > 0, so:

I'= —I(v—Bo(1—1)) = Bol (I, — I) where I,, =1— Bi
0
Let T = By, so that:
=1 (1;8 - f) — [0 — (I)? where I, = fy — v
Then we get that its solution is given by:
T IsseiSSt
(t) - iss 1 Isst
M0 T
Note that
I d I elsst = I, elsst fssei“tfssefsst
88 Iss iss o s ISS iss B I 7 2
0t o — 1 4 el oy —1te! (%—1+efsst>

which verifies the answer. Using I = /8, we obtain the desired result.
O
Proof. (of Proposition 16) Given the path {S(t)} define



We start with
m(z,t) = i%’(ﬁ)[;j(t) where ¢;(z) = sin ((J +3)m (1 B g))

Note that each ¢, satisfies the lateral boundary conditions for m(z,t) at + = 0 and x = =

for all . Then the p.d.e. can be written as:

2
0 =my(z,t) — %mm(x, t) +vm(z,t) — B(t) or

~

0= i) [B(0)-+ b0+ (G + D010 - PO 2]

or for each j =0,1,...:

. . 2
or letting y1; = ((j + 3)%)

S

~~
-

~—
I

<‘19j sPj 7>

t
bj(O)e*“ft—l——«pj’1> /e“f(ts)B(s)ds
0

On the other hand {b,(0)} are given so that

T
M@O) =21
(0) = Z1(0)
so that M(0) = fof mo(z)dz and if mg(z) does not depend on = we have M(0) = zmg(x):
@) =20 10
T T U

which ensures:



SO

Finally, -

Thus,

i i g e [ so)

since

(<%>1>)2:( z )21 _ 2
(i) \7G+3)) T2 T (a(j+ 1))

To check, note that at ¢t = 0:




since 1= —2_ Thus
250 (r+3)

7=0 7=0
w; = : 5 > 0 and wj=1
(7(j +3) Jzo
Defining
H(z) = ije Hi%
§=0

we can write:

Proof. (of Proposition 17) We can rewrite the o.d.e. for m as:

() = $Mae(z) + (1= £) & for all z € [0, 7]

The solution is given by a sum of particular solution, (1_,310)%7 and two homogenous solutions.
The homogenous solutions are exponentials exp(£yz). The requirement that m,(0) = 0
implies that the coefficient that multiplies each of the exponentials has the same absolute

value but opposite sign, i.e. the two homogenous solutions combine into a cosh. Then,
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imposing that m(z) = 0 we get:

- Nl cosh(yx
m(z) = (1-5)g <1 - W&;;) where v = V2v/o

Thus, using that foj igiﬁgg = tan};(ﬂ) we obtain the desired result.
]

F Planning Problem

This section collects all the results used to analyze the planning problem.

F.1 Dynamics of N and Flow of Adoption Cost

Recall that

= (t)
= —m(a(n).) T /0 ma(x, t)da

=0

where the first term is zero from the exit point of the distribution of non-adopters.

the law of motion of m
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where the last term is zero from our assumption of reflecting barriers. Let the adoption cost
per unit of time A(t) be defined as

A(t) = ¢ (Ny(t) + vN(t))
:c<1/(1 — N(t)) —

(o (1 50) - Z et

where the first term are the agents that are replaced with > Z(¢). The second term are

the agents that hit z(¢) from below per unit of time so they pay ¢ and adopt the technology.

F.2 Derivation of the pde’s for the planner’s problem

To derive the problem in continuous time, we write the adoption problem in a discrete-time
discrete state setup. We do so by using finite-difference approximation and then we consider
the planning problem in that set-up. We obtain the first order conditions for a problem in
finite dimensions. Lastly, we take the limit to develop the corresponding p.d.e’s.

First we derive the finite difference approximation for a Brownian motion reflected be-
tween two barriers. The time step A so that times are between t = 0, A, 2A,.... The space
step is A, so that = € {xy,2z9,..., 27}, where 1 = 0,2; = U and ;41 —x; = A,. The p.d.e.
inside the barriers is

2

my(z,t) = —vm(x,t) + vf(z) + %mm(x, t)

Its finite difference approximation is:

0_2 (Mig1e — 2miy +My—14)
2 (Ay)?

Myt+A — Myt

A = —vmi +vf; +

fori=2,...,1 — 1. We can write the finite difference approximation as:

A
Mgy A = Miy (1 — VA — Uz(A—)Q) + fivA

A S S SRy
9 (Ax)szJrl,t 9 (Agg)2 s

For the finite approximation, we have that since the law of motion must be local, and mean
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preserving:

A
M gpn = My (1 —VvA — UQW) + firA
o2 A o2 A
MRV N7 EREE
m =m 1—1/A—02i + fivA
It+A = Mgy (Ax B I

o2 A o?

A
+ 7wm1—1,t + ?Wml,t

T

We can write the l.o.m. at the boundaries as:
mMy+A = Mg (1 — I/A) -+ flyA +

mLHA =Mmyy (1 — VA) + f[l/A +

At the reflecting boundaries = 0 and = U, the boundary conditions is m,(x,t) = 0.

Note that as A, — 0 we require that

(m171,t - m[,t) . (m2,t - ml,t)

A = A — 0

Now we get back to the planning problem. We will have two measures, {m;} and {g;.}.
m; is the measures of those that have not adopted and g;, the measure of those that have
adopted. Let a;; > 0 be the measure of adopting at ¢ with o = x; at . Thus at time ¢, the
7 since
the sum of the two is the invariant distribution. The initial condition are ¢g;o = 0 V7 and

measure o, is transferred from measure m;; to measure g;; Note that m;; + g;; =

m;o = 7 all non-adopters. The law of motion of the state is then:
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A
0 S my+nA =M1y (1 Ax) ) + fl/A
Lo o? A A o2 A B
2 (AT A
s A
O<mzt+A_mzt 1 - O—W +fVA
o2 A o2 A ,
+?sz+lt+ SRTE g Amiy — gy for i =2,
A
0 <mrsrn =mry (1 vA — o? A )2) + frA
o A o2 A
+ 5—(Aa:)2ml 1t + = (Ax) — Oy

which can be written in vector notation as:

M1 = Lmy —ay >0

where L is an I x I stochastic matrix which depends on I,v,0% A and A,. We assume that

A (v + (0/A;)?) < 1 so that all implied probabilities are positive.

1! g
A _ .

=0 [1=0,A2A,...}

where

Ulmy) = le G _ mit) (90 +0,

=1

I
1-— Z mj,t] > T
j=1
subject to the law of motion:
my, = Lmy — oy for all t =0, A, 2A, ...

and subject to non-negativity:

mj1 > 0and a;p > 0forall 5 =1,...,1, and for all t = 0, A, 2A, ...

Let (H—Ar)
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vector of the matrix L . The Lagrangian £ becomes:

L= > (1 :Ar)t {u (my) A — ZZI;%C}

{t=0,A,...}
1 t (1
+ Z <1+Ar> {ZM& (mi,t+A_Li'mt+ait)}
{t=0,A,... } i=1

Derivative of Lagrangian with respect to ay:

oL 1 K
Oajy - <1+Ar> Wi =]

Derivative of Lagrangian with respect to m;, for 2 < j < I —1:

oL ([ 1 tau(mt)A
amj,t_ 1+ Ar

+(1+ ) { tA1+Ar)—Aj,t<1—uA—02ﬁ>}

1 A
(1+Ar) 3 A, At F A

where

We can write mj, for 2 <7 <1 —1:

1 \"'oaLc  au(m)
= A4+ X a(l+A
(1 -+ Ar) (9mjt am]’t + >\J7t A( + T)

A o2 A
= Ajit (1 —VvA - UZW) Y (A,)? [Ajrre + Aj-ri
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and rearranging:

A

1 )‘t 0L OU (m)

(1 + Ar))\j,th - <1 T AT

ijt 8mjt
a2 A
+ —

ar) TEy

dividing by A and further rearranging the expressions:

+ )\jﬂf (1 — VA — 02 [)\j+1,t + )‘j—lﬂf]

B 1 \"1 9L ou(m)
“*”W'M—(m> Aomy ~ omy, e Nies)

Ajt = Aji—a o Ajgi — 200+ A1y
2 G Ry TNE

For the bottom boundary j = 1 we have:

1\ oL ou(my)
= A A1+ A
(1 + AT’) 8m1t 8m1t + >\17t A( * r)

A o2 A
— )\17,5 (1 — VA — O'QW) — 7 (A )2 [)\Lt + )\27t]

1 -t 1 3£ 31/{ (mt)
“*”W—A—(m) N i A U

)\1,15 - )\1,th o? 1 )\Q,t - )\1,1&
i (T) oA, (A—)

For the top boundary j = I:

1 \"1 0L ou(my)
(7’ + I/))\[J_A = (H—AT’) Kamh — Omy, 4 (>\[,t - AI,t—A)

)\I,t - )\1,th o? 1 )\Ifl,t - )\I,t
() i ()

Thus the limit as A | 0 and A, | 0 is that

Ao (0,1) = A (U, 1) = 0
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First order condition with respect to ay; for t =0,A,... and j=1,...,1[:

At —c<0, a; >0 and

Oéj7t [Aj,t — C] =0

First order condition with respect to mj; for t = A,2A,... and j =1,...,I:

oL <0, mj; >0 and
8mjt
oL

mjt th = O

Note that as A | 0 and A, | 0 and z = x; we have

U
ou () — x(6g +0,N(t)) + 6, (g - / m(z,t)z dz)
omj 2 0
Consider a z; = x for j = 2,...,/ —1 or 0 < & < U. Take the fo.c. for m;; derived

above and assume that aaTLf = (. Take the limit as A | 0 and A, | 0:

(r+v)\x,t) =x(6p + 0,N(t)) + 0, (% — /OU m(z,t)z dz)

o2
+ Mi(z,t) + ?)\m(x,t)

If instead % <0, then

U

(r + VA1) < (00 + 0N () + 0, (5 - /OU m(z, t)zdz)

0.2

We derive smooth pasting here. Suppose that at ¢t we have \;; = c for all ¢ > j, i.e. for
all z > z(t), or A(z,t) < ¢ for x < z(t) and A(x,t) = ¢ for x > z(t). Assume also m;; > 0
and m;_y; > 0, so that dL/0m = 0 for both. Then we can write the f. o.c. as:

8mjt

C—)\jﬂg_A 0'2 1 C_20+>\j—1,t
+< A )+ 2 A, ( A, )

Taking the limit as A, | 0 we have: A\, (Z(t),t) =0.

(r+v)e= —v(c—Nj—a)
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In summary, a planner problem is given by {Z(t), A(z,t), m(z,t)} the path of optimal
threshold so that adoption occurs for x > Z(t), the Lagrange multiplier V', and the density

of non-adopters m, respectively, such that the p.d.e. for the non-adopters is:

my(z,t) =v(1/U — m(z,t)) + %Qmm(x,t) for z < z(t) and t > 0
m(z,t) =0 for x > Z(t) and t > 0
m,(0,t) =0for t >0

The p.d.e. for the non-adopters:

pA(z,t) = 2 (6 + 0,1 — /Ox(t) m(z,t)dz]) + 6, (% — /Om(t) m(z,t)z dz)
+ %QAxx(a:,t) + M(z,t) for x < Z(t) and t > 0
Mz, t) =cfor x > z(t) and t > 0
Ae(Z(t),t) =0for t >0
A:(0,t) =0 fort >0
The conditions for z are:
e We look for z(-) to be continuous ¢ > 0.
Conditions for m:
e We look for m(-,t) to be continuous for all x € [0,U] and ¢t > 0.
e We look for m(-,t) to be C? for all z € [0, Z(t)], and ¢ > 0.
e We look for m(z,-) to be C* for all = € [0, z(¢)], and ¢ > 0.
e The initial boundary condition for m is m(x,0) = 0 for all z € [0, U]
Conditions for \:
e We look for A(-,t) to be C! for all z € [0, U].
e We look for A(-,t) to be C? for all z € [0, z(¢)], and ¢ > 0.
e We look for \(z,-) to be C! for all z € [0, z(¢)], and ¢ > 0.

e The final boundary for A is A(x,T") = 0 for all = € [0,U] (T may be +0o0).
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F.3 Solution of the Steady State Planning Problem
The solution for A of the form

0 + Q'RNSS 971» .
g2 Tt Tss Tz o CLe™ 4+ Che
p p

Mz) =
for n = \/2p/0?, and

0 QnNss T —nZ
L + n(clenxss _ 026 772?35) — O

90 + enNss

’ +n(C1—C2) =0

Thus, given 0y+0,, N5, and Zs,, the constants (Cy, Cy) are the solution of two linear equations.

Moreover, the values of A;, Ay are proportional to 0, given by

n 0 +‘9nNss —nF T
058 = OT == 77(02 — Cl) = 77(026 NTss __ C’leﬂ 35)

Let C; = Ci/éss. We can write:
1= ﬁ(éz — él> = T](égeiniss — élemfss)

which has solution:

~ 1 (1 — e M

S Ul )
n (e_nmss — e"]@ss)

~ I (1 — e

oL i)
fr] (6_771355 . e"?xss)

Using value matching we get:
0, - ~ .
NTss + _779 Zss + n(Cre" + Che™ M) = 7.

Letting y = nZs we can write

- - 0,
U(y) =y +n(Cre? + Ce™) + inZss
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Using nég =1+ 776’1 and the definition of C’l we get

~ B (1—e7Y) _ 0,
= y _ y y Ly
v(y)=y+e (ey_e_y)(e +e )+77p933
We have the following properties:
S e
1' ¢(0) - ,r/péss 88
2./ (y) = (zjﬁ; s0 9/(0) = %71;/(00) =1, and 9" (y) > 0,
7 ‘ . 12;( )_ - qinZss
3. 0(y) = 4+ 1+ o(y*) + 1% Zug and lim, oo B =

For fixed 0 < n < oo and small ¢ using the first order approximation:

Tgs = 2 (Ni — HT”ZSS>
938 10688

For the case when o is small (i.e. n is large) we find:

_ L, 7 b
éss \/2_p péss

Defining v = y/2v/0?, for the uniform case we have:

ZSS

fss(Nss)
Ngyg=1-— / m(s; Ngs)dx
0
Tss 1 yx —yx
:1—/ —{1— (™) |y,
0 (

U e'YﬂEss _|_ e*’}/ifss>
r VTss __ o~ VTss
g T (e —¢ 7)
U AU (e7%ss + e77%ss)

and

Tss YT —yx
:U/Q—/ £[1— (e + ) ]d:v
0 U (e'}/xss + ef'yxss)

j,Q 1 Tss
=U/2 - = _ _ vz -7\ 4
/ STi; (@7 o) /0 (2" + ze™ ") da
:U/Q_a_s_gs+ T (1% — e 1 2 1

2U fy_U (€7%ss 4 e~ VTss) + V2 (e)Tss 4 e=3ss) 42U
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F.4 Perturbation of the Planning Problem

We consider the planning problem with {Z(t,¢€), N(t,€), A(z,t,€),m(z,t,€)}. We again lin-
earize this equilibrium with respect to € and evaluate it at e = 0. We differentiate A(z,,¢)
with respect to € at each (z,t) to obtain ((z,t) = Z\(z,t, e)|6:0 which solves the following

p.d.e

pl(x,t) = 20,n(t) + 0,2(t) + %Qme(x, t)+ le(x,t) (81)

for © € [0,Zs) and t € [0,7] and where z(t) = %Z(t,e)L:O and n(t) = ZN(t, e)}ezo. The

boundary conditions are:

(82)

ProOPOSITION 18. The solution for the KBE equation for ¢ is given by
lx,t) = Z 0;(2)0(t) for x € [0,Zs) and t € [0, 7]
§=0

where for all j = 1,2, ... we have:

0t) = /T e Vi g (1) dr for t € [0, T
4. — —6O.n <90j7x> _ p <()0j71> or
0) = ~0unll) (05, 5) Ot {0j: %5 for t & [0,7]

o;(z) = sin ((% +j) ™ (1 - ;)) for z € [0, T

<%mzlhm%mm

The proof can be done by verifying that the equation hold at the boundaries, that for
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t > 0 the p.d.e holds in the interior since
U (t) = ;0(t) + 5,(t) for t € 0,7] and j = 1,2, ...

and since {¢;(z)} form an orthogonal bases for functions, and finally that the boundary
holds at t = 0 for x € [0, Zs).
Note that the derivative of the solution for A is

T o
gac 753) = 37 t d _0 - ~¥i(r) d
(T / Zce (T)dr T ]Z:;e z(T)dT
where ¢; = 2 (1 — M)
] m(i+3) /)"

F.5 Perturbation analysis of the Planning Problem

Recall that from equation (82), y(¢) is equal to

_gm (fssy t)
/N\x:c (jss)

T
:/ (x ch vilr=tp, )dT+/ S —— Zce Vit (1)dr
:1::): ss t x

xSS —

/ Gyn (T — t)n(1)dr —l—/t Gy (T —t)z(T)dr (83)

The expression for n(t) is given by equation (77) and can be written as

/ J(t = 9)5(5)ds.

where as before no(t) = —>_72 ﬁ%e—uﬁx We can obtain a similar expression for
2 )

y(t) =
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z(t) using the solution for p(x,t) as

2(t) = — /O%s xp(z, t)dz

Y0 / vy (@)da
J=0 0
oo — . t OO0 .
Z T2, j + —cos(jm) (pj,w) e it 4 i (200)0° Z T(j+3) — COS(JW))e_M(t—T)g(T)dT
g J)) (05 0i) 0 o= m(j +3)

/ t—s s)ds

where 2o(t) = —>_7, %n(f‘%%) &?”Z;)e_ﬂjt and ¢; = (1 — %) Then, equation (83) can

be written as
T
t

# [ Gutr -1 <ZO< )+ / Hay(r s)y(s)ds) ar

T T

:/ Gyn(T — t)ng(T)dr + GynT—t H, (T — s)y(s)ds dr
o T 2

+/ Gy (T —t)20(T dT—I—/ Gy (T —t)H (T — s)y(s)ds dr
0

Jolt) + / M(t, 5)5(s)ds

where
yo(t):/fayn(f Yol )d7+/tTGyZ(T £)z0(7)dr
and
OTM(t,s)g(s)dsz/tT/DtGyn(T—t)H (r — 9)7 dsd7+/ / o (7 — ) Hoy (7 — 8)i(s)ds d
_ /T /T Gyn(7 — ) Hoy (7 — )5 (s)ds dr + /T / _)H. (7 — 8)j(s)ds dr
0 max{t,s} 0 max{t,s}
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with

where e "G, (w)Hyy(q) = Gy.(w)H,,(q)e . Using the definitions of ny(t) and zy(t) we
first find the value of go(t) as

Go(t) = /t Gyn(7 — O)no(7)dr + /t G (r — t)2(r)dr

/ ZZ _SS 260ty o—t) i g
)\x:c (-Iss <9027 901>
- SN, T (ew)
Ava(Tss) Jt jzo ; ( i) (i, 901>
—0p 1 Tss Vi, w L e~ Witnit _ o= +pi)T
=2 D (Grea)—1 << . .>>6W< T ) &)
xx\Lss) i i= 2 iy ¥ 5 i
Aoa(Tss) =5 =% (5 +19) (i ¢ 7
Then, we find
T A T T
i M(t,s)gj(s)dSZ/ / Gyn(T — t)Hpyy (1 — 5)y(s)dr + / Gy.(T —t)H, (T — s)y(s)dr | ds
0 max{t,s} max{t,s}

T /T 00 00
:é(fss)/ / chje—w De=ri=8g(s)dr ds

max{ts}] —0 i=0

O(Zss / / ce ViD= 55V dr ds
max{ts} =0 i=0
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Onmy (CESS)CT2

where we let é(i:ss) = G Solving the integrals we get
T O —(j+pi) max{t,s} _ o—(;+mu)T
| Meo(s)s = (., / IS (¢ ‘ ))as
0 =0 i @/)j + W
P = —(Yj+pi) max{t,s} _ —(j+pi)T
+ O(Z) / Z Z ¢ et (6 e ) s
0 =0 i=0 V5 + 1
T2 —(j+pi) max{t,s} _ o—(j+u:)T
~ e~ Wi e~ \Wi
_ @(jss)/ (c; + ) eVt Hus < > s
T

§(t) = olt) + O(i) / R (t, 5)g(s)ds

Notice also that since e ™ M(t,s) = e "M (t, s)

T T 0o 00 —(r+pj+p;) max{t,s} _ e*(TJF/‘jJFM)T
_'r’tM t S dS = @ Tss / Ci + ci eﬂjt+#i5 <6
| et o - 60w | SICER S

G HJB equations for a(x,t) and v(z,1)

Moreover, a(x,t) solves the p.d.e. and boundary conditions for all ¢ > 0:

2
pa(z,t) = 2(0o + 0,N(1)) + %am(:c, £) + ay(z,t) if © € [0, U]

a,(0,t) = a, (U, t) =

where the boundary conditions arise from our assumption of reflecting barriers. Throughout,

p p ’

we assume 0 < a(x,t) < for all x, t, and 0 < ¢ <

Adoption Decision: The value function of an agent that has not adopted solves the fol-

lowing variational inequality:

pv(x,t) = max {%ZUM(x, t) + vz, t), p(—c+ a(x, t))}

for all t > 0 and z € [0,U]. We conjecture that the optimal decision rule is given by a path
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for the threshold z(t) € (0,U) such so that, for each t > 0, the following holds

2
pu(x,t) = %vm(x,t) + vz, t) if 0 <o < z(t)

v(z,t) = —c+alx,t)if (t) <z <U

If v(-,t) is C'' we have the following boundary conditions for all ¢ > 0:

v(Z(t),t) = a(Z(t),t) — ¢ Value Matching
v (Z(t), 1) = ax(z(t),1) Smooth Pasting
v:(0,) =0 Reflecting

where the first one is the value matching condition, the second the smooth pasting condition,
and the last one arises from the reflecting barrier at x = 0.

H The dynamics of the deterministic model

For each z, let a(x,t) = x a(t) where pa(t) = 0y + 0,N(t) + a4(t). We fix an x and a path
a(t) for t > 0. Let t*(x) be the optimal ¢ that solves the adoption problem:

t*(x) = arg max G(t,r) with G(z,t) = e " (a(t)z — ¢)
9

The necessary first order conditions if «(t) is differentiable at ¢ = t*(z) < oo are:?

—pla(t)z —c) +zou(t*) = 0 if t*(x) >

0
—p(a(0)z —¢) + zay(0) <0 if t*(x) =0

Furthermore, since not adopting is feasible (i.e. ¢ = 0o) and yields a zero payoff, then

a(t*(x))z > ¢ for all z.

Given t*(z) we can define Z(t) as the smallest value of x that makes ¢ = ¢*(x) optimal for

2Tf a(t) is not differentiable at 0 < t = t*(z) < oo:
—plaft)s — ¢) + 307 (+7) <0 < —p(a(t?)z — ¢) + zaq (£7)

where «; (t*) and o (t*) are the left and right derivatives of a(t) at ¢ = t*(x). Note that « is differentiable
at ¢t provided that N(t) does not jump at t. If N(¢) jumps at ¢, then « has right and left derivatives.
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any t > 0.3 We will look for an equilibrium where at any ¢ > 0 someone adopts, so

pla(t)z(t) = c) = z(t)au(?)

provided « is differentiable at ¢.3! The following two lemmas are useful to characterize the

solution for the deterministic case. The proof of both lemmas can be found in Appendix ?77.

LEMMA 7. Assume that for ¢ > 0 there is some = for which 0 < t*(z) < oo, we denote
the smallest of such x as Z(t). Then if the first and second order necessary conditions holds,

then N(¢) and a(t) are weakly increasing in time.

The fact that the threshold z(t) is weakly decreasing rules out a solution where the

number of adopters is decreasing through time.

LEMMA 8.  Assume that Z(¢) is continuously differentiable with respect to time, that N(¢) is
weakly increasing in time, and that the initial condition satisfies Mo(z) = [; mo(z)dz < F(x)
for all . Then, Z(t) must be decreasing in time, and if in an interval N(¢) is strictly

decreasing, then z(t) must be strictly decreasing. Thus,

(1—e"F(x)+ e " My(z) for = < Z(t)

M(x,t) = xm z,t)dz =
(@) /0 (1) (1 —e " F(z(t)) + e " My(z(t)) for z > Z(t)

The previous lemmas has the following immediate implication.

LeEMMA 9. Consider the initial condition mgy(z) = f(x) holding for all x < z(0). Then:
m(z,t) = f(x) and N(t) =1 — F(z(t)).

The last lemma states that if we start the economy with a threshold z(0) and no agent
below that threshold has adopted, then all agents with = > z(0) will immediately adopt and
the distribution of the non adopters is time invariant. This result is intuitive and it is at the
heart of the lack of dynamics in the equilibrium of the deterministic problem.

Assuming Lemma 9 holds and that mg(z) = f(x), combining the first order conditions
with the law of motion for a(t), pa(t) — a;(t) = 6y + 0, (1 — F(Z(t))), we get

Z(t) [0 + On(1 — F(Z(t)))] — pc =0 (85)

30Since in equilibrium 0 < N(¢) < 1, then %0 < a(t) < % and 0 < 545~ < @(t) < 4. Note that we

901‘% -
allow Z(t) > U, but in this case everybody is adopting at ¢. Thus, we assume that w > B
nobody can ever adopt, and ¢ > 0, so that some type will never adopt.

31If o is not differentiable at ¢, then: Z(t)a; (t) < p(a(t)Z(t) — ¢) < Z(t)a; (t).

otherwise
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Note that in equation (85) the solution for Z(¢) does not depend on t. Thus, we can construct
equilibrium where z(0) = z(t) for all ¢ > 0. We summarize this result in the following

proposition

ProposITION 19.  Consider the initial condition mgy(z) = f(x) for all x < z(0). Then
the solution implies a time invariant threshold Z(t) = Z solving equation (85), immediate
adoption for all agents with > z, and a time-invariant fraction of adopters N(t) = N =
1 — F(z).

Note that equation (85) may have multiple solutions. Given that from Lemma 7 we know
that Z(t) is weakly decreasing and «(t) must be strictly increasing in time, then the lower
root is the stable solution in the sense that, if the economy is at that point it will remain
there forever. We show below that other paths are also possible in the presence of multiple
solutions, with the fraction of adopters N () ratcheting up at discrete moments in time.

Both cases are shown in Figure 1, which shows the solutions of equation (85). In Panel (a)
the solution with low Z, is the stable solution, since Z(t) is weakly decreasing from Lemma 7,
and the one with higher adoption, since N(t) = 1 — F(Z(t)). Panel (b) shows that with low
strategic complementarities (i.e. low 6,,), there is only one steady state.

Let us consider the case with two possible stationary equilibria, denoted by zy > Zz, with
associated adoption rates Ny < Np, and the stationary value function pa(t) = 6y + 6, N(t)
(recall o = 0) with solution ay = (6y + 6, Ny) /p and &y, = (6 + 0,N1) /p, where ay < ay,
since a low threshold yields higher utility due to the larger adoption rate.

We can now check that indeed t*(z) are optimal for a steady state equilibrium. Since

a(t) = a; for i = L, H, then the adoption problem becomes:
* - Pt (. —
t*(x) = arg max e (viz — )

and the solution is:

oo ifzx<
t*(x) =

Blo o

0 if x >

Hence, there are no dynamics in the deterministic case. Nonetheless, an equilibrium can
be constructed where Z(t) is piecewise continuous and jumps from Ty to Z at some arbitrary
time T and where the value of N(t) also jumps. For instance, let z(t) = Zy for t € [0,T)
and let Z(t) = z, for t € [T, 00), where T' > 0 is arbitrary. For t > T, set a(t) = ay, and for
t €0,7), solve ay(t) = p(a(t) — ay) with boundary condition «(7T") = ap. This gives

oz(t) = O_éH + (C_YL — C_YH) 6_p(T_t)
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Note that o/(t) > 0 for t € [0,7) and «(0) > ay. The equilibrium so constructed satisfies
the first and second order condition for ¢*(x). The following proposition describes such

“ratcheting” equilibria:

PROPOSITION 20. Assume that mg(x) = f(z) for all € [0, U]. Let X be the set of steady

state equilibria, i.e.
X={0<%<U:pc=7%0+0,(1—F(z))]}
An equilibrium is described by a path Z(t) that at times 0 =ty < t1 < ty < t,,, < 00:
Tt)=z€ Xfort; <t<tforalli=12...,m

and where z; > z;y; foralli =1,2,... m.

In words, an equilibrium is given by a piece-wise constant path for Z(¢), such that at each
discontinuity point Z(¢) jumps down to a value that is one of the steady-state solutions of
equation (85). The set of equilibria thus includes the fully static one where z(0) = z,,, as
well as several other time-varying paths where the elements of X (the steady state solutions)
and the time sequence t; are arbitrarily selected subject to the constraint that the path for

z(t) must be weakly decreasing.

H.1 Proofs of the deterministic model

Proof. (of Lemma 7) The necessary second order condition for 0 < t*(z) < oo is:
Gu(t, @)=t (2) = e " (—pay(t*)m + au(t')s)

Differentiating with respect to time the law of motion for o (i.e. pa(t) = 0o+ 0, N(t) + cu(t))

we have:
pOét(t> = QnNt(t) + Oétt(t)

Evaluating the second order condition at (t,Z(t)) and replacing ay(t):

9
<
—~
\_PF
S
—~
~
S~—
S~—
I
Cb‘
>
S
S
|
e
Q
&
—~
~
S~—
8l
—~
~
S—

_l’_
= e " (=pay(t)T(t) + (1) (pau(t) — O Ni(1))) = —e T ()0, Ni(t)

Thus, if the necessary first order condition holds, i.e if Gy (¢, Z(t)) < 0, then N;(t) > 0 and
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hence it is weakly increasing.

Furthermore, using the first order condition at ¢ > 0

pla(t)z(t) = ¢) = au(t)z(t)

Note that if ay(t) is strictly decreasing then a(t)z(t) — ¢ < 0, which is a contradiction with
a(t)z(t) — ¢ > 0. Thus, for a t where « is differentiable (no jump on N), then «(t) must be
weakly increasing.

Lastly, notice that

=1— [Mo(z(t))e ™ + F(z(t)) (1 — e™")]

where the second line uses that z(t) is decreasing in time. Taking the derivative of N(t) with

respect to time:
Ni(t) = [mo(z(t))e™" + f(2(t) (1 — ™) ] Zo(t) — ve ™ [F(2(t)) — Mo(Z(1))]

4

Proof. (of Lemma 8) The proof has two parts. The first part establishes that Z is decreasing.
The second one uses that property to obtain the law of motion of M. Differentiating the
definition of N

Z(t)
N = 1— / m(z, t)dx
0
with respect to t, and using that m(-,t) is zero for x > Z(¢) is in general strictly positive at
the left limit m(z(t)~,t), we have:
Z(t)

No(t) = 2(t) Lsuoy<oym () 1) — /0 (@, )
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Using the law of motion of m we have:

() Lz, w<oym(z(t) ", t) + v (mx,t) — f(z)) do

I
Kl

Ny(t)

+(t) Lz, w<oym(Z(t) ", t) + v (mx,t) — f(z)) do

Kl

Oz <ym ()™, 1) + v (M(z,t) = F(,1))

I
Kl

But since, M (x,t) < F(z,t) for all x, then if Ny(t) > 0, then z,(t) < 0.
Now, let use that z(t) is decreasing. In this case if x < Z(¢) then it must be that § < Z(s)

for all s <t¢. Then for such = we have:
my(z,s) = —v (m(z,s) — f(x)) for all s <t
We can solve this o.d.e. for each z, using the boundary m(z, s) = mg(z). This gives

(1—e)f(x) +emg(x) forall z < Z(t)

m(x,t) =
0 for all x > Z(t)

Integrating this density we get the desired result of its CDF M (z,t). O
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I Additional Figures and Tables from SINPE’s Appli-

cation

Figure 13: Average Transaction Size
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Notes: The figure shows the evolution of the average transaction size in SINPE. The figure includes a vertical
dashed line to mark the start of the COVID-19 pandemic (March 2020).

Figure I4: Transactions by Sender-Receiver Type
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Share of Transactions by Sender-Receiver Type

2015m1 2017m1 2019m1 2021m1

s |ndividual-Individual === |ndividual-Firm
Firm-Firm Firm-Individual

Notes: Transactions are classified according to the type of user. Individuals correspond with Costa Rican
adult citizens. Firms correspond with formal enterprises.
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Figure I5: Share of Transactions Between Types of Users (Weighted by Amount)

o -

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
1

Share of Transactions by Sender-Receiver Type
(Weighted by Amount)

2015m1 2017m1 2019m1 2021m1

s |ndividual-Individual — = |ndividual-Firm
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Notes: The figure shows total number of SINPE transactions between four different types of users, as a share

of all of their transactions.

Figure 16: Mean Number of Connections per User

Distinct Receiver per Sender
Distinct Sender per Receiver
4
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(a) Receivers (b) Senders
Notes: The figures include a vertical dashed line to mark the start of the COVID-19 pandemic (March

2020).
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Figure 17: Average Age at the Time of Adoption
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Notes: The figure includes a vertical dashed line to mark the start of the COVID-19 pandemic (March 2020).

Figure I8: Marginal Effect of Network Changes on Usage Intensity (Value of Transactions)

Change Value of Transactions (asinh)
0
1

T T T T T

-6 -4 -2 0 2 4 .6
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Notes: This figure plots the marginal effect of ANFoworkers in the specification described by Column
(3) of Table 5. Bars denote 95% confidence intervals. The dependent variable in this estimation is the
number of transactions (transformed using the inverse hyperbolic sine function) on each period for each
user.
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Figure 19: Marginal Effect of Network Changes on Usage Intensity (Value of Transactions)
Among Coworkers Only
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Notes: This figure plots the marginal effect of A NFoworkers in the specification described by Column
(3) of Table 5. Bars denote 95% confidence intervals. The dependent variable in this estimation is
the number of transactions (transformed using the inverse hyperbolic sine function) on each period
for each user.
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Figure 110: Entry and Diffusion Across and Within Networks of Relatives and Coworkers
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Notes: Panel (a) and Panel (¢) show the timing of adoption across networks, defined as relatives and cowork-
ers, respectively. They show the entry date (first time an individual within a network adopts the technology)
across different percentiles of the distribution of networks. Percentiles are calculated in the period with
highest adoption in the sample given the share of individuals that had adopted the technology. Panel (b)
and Panel (d) use the same classification of percentiles to show the patterns of diffusion of the technology

within networks.
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Table I1: Mean Share of Transactions Within Network (2015-2021)

(1)

Neighborhood Firm Family

(4)

Union of all three

(2) (3)

Neighborhood 0.39
Firm 0.56
Family 0.50

0.39 0.65

0.58 0.25

Notes: We construct average shares using data from May 2015, when the technology was introduced, to
December 2021. Shares using data from the middle of the period (year 2018) only are shown in Table 1.

Table 12: Amount Transacted and Size of Network at Entry

Dependent variable: Amount transacted (logs)

(1) (2) (3)
Size of Neighbors’ Network at Entry = -3.125%**
(0.005)
Size of Coworkers’ Network at Entry -1.4947%**
(0.005)

Size of Family Network at Entry -1.475%%*

(0.006)
Observations 97,655,426 13,243,530 12,000,848
Adjusted R? 0.147 0.171 0.090
Network x Time FE Yes Yes Yes

Notes: The dependent variable in this estimation
which we transform using the inverse hyperbolic
increasing the share of an individual’s network who

is the amount transacted each month for each user,
sine function. The coefficient describes the effect of
had adopted the app at the time when she downloaded

it. We run regressions using data from May 2015, when the technology was introduced, to December

2021.
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Table 13: Changes in Number of Transactions and Network Changes—Alternative Transfor-
mations

Dependent variable: A Number of Transactions

(a) Logs 1) (2) (3) (4)
A Share Neighborhood Adopters — 0.917%** 0.833***
(0.023) (0.041)
A Share Coworkers Adopters 0.160%** 0.175%**
(0.006) (0.008)
A (Log) Wage 0.043%** 0.04 8%
(0.001) (0.001)
A Share Relatives Adopters 0.401%%*  0.411%%*
(0.008)  (0.009)
Observations 93,675,631 15,069,613 10,456,216 6,750,537
Adjusted R? 0.018 0.022 0.019 0.023
RMSE 0.746 0.721 0.745 0.715
Time FE Yes Yes Yes Yes

(b) Davis & Haltiwanger

A Share Neighborhood Adopters — 0.916%** 0.701%***
(0.026) (0.046)

A Share Coworkers Adopters 0.236%** 0.255***
(0.006) (0.008)

A (Log) Wage 0.042%** 0.047%%*
(0.001) (0.001)

A Share Relatives Adopters 0.420%**  (0.426***
(0.008)  (0.009)

Observations 25,632,610 16,208,557 11,275,971 7,230,892
Adjusted R? 0.025 0.032 0.028 0.035
RMSE 0.795 0.770 0.788 0.760

Time FE Yes Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses. Extreme values
(one and 99 percentile) were trimmed from the dependent variable. Results are robust to alternative
transformations (Table 3) and to no trimming.
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Table 14: Intensity of Usage (Value of Transactions) and Network Changes

Dependent variable: A Value of Transactions

o) Logs 1) 2) 3) (1)

A Share Neighborhood Adopters — 1.095%** 1.005%%*
(0.037) (0.066)

A Share Coworkers Adopters 0.202%** 0.214%***
(0.009) (0.013)

A (Log) Wage 0.076+** 0.084**
(0.001) (0.002)

A Share Relatives Adopters 0.469***  (0.492%***
(0.012)  (0.015)

Observations 93,683,186 15,040,729 10,455,020 6,734,204
Adjusted R? 0.016 0.019 0.016 0.021
RMSE 1.186 1.157 1.185 1.149

Time FE Yes Yes Yes Yes

(b) Davis & Haltiwanger

A Share Neighborhood Adopters — 0.834*** 0.733%%*
(0.037) (0.055)

A Share Coworkers Adopters 0.234%** 0.250%***
(0.007) (0.010)

A (Log) Wage 0.061%** 0.067***
(0.001) (0.001)

A Share Relatives Adopters 0.417%%*  0.431%**

(0.009) (0.011)

Observations 16,179,194 16,179,194 11,274,524 7,214,334
Adjusted R? 0.029 0.029 0.025 0.032
RMSE 0.936 0.936 0.953 0.928
Time FE Yes Yes Yes Yes

(¢) Inverse hyperbolic sine

A Share Neighborhood Adopters — 2.084*** 1.208%**
(0.104) (0.187)

A Share Coworkers Adopters 0.768%** 0.831%**
(0.023) (0.034)

A (Log) Wage 0.117%%* 0.125%#*
(0.002) (0.003)

A Share Relatives Adopters 1.061%**  1.066%**

(0.029) (0.035)

Observations 25,639,560 16,179,194 11,274,524 7,214,334
Adjusted R? 0.027 0.035 0.031 0.040
RMSE 3.032 2.926 2.958 2.847
Time FE Yes Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses. Extreme values
(one and 99 percentile) were trimmed from the dependent variables.

110



Table I5: Changes in Intensity of Usage using Logs and Network Changes

Dependent variable: Aln Value of Transactions

(a) Neighbors Network (1) (2) (3) (4)

A Share Neighborhood Adopters — 3.730%** 0.917%** 3.075%** 0.587***
(0.014) (0.023) (0.017) (0.023)

A (Log) COVID-19 Cases 0.006***

(0.000)
Observations 23,675,631 23,675,631 20,537,868 23,675,631
Adjusted R? 0.002 0.018 0.002 0.020
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

A Share Coworkers Adopters 0.494%** 0.160%** 0.436*** 0.123***
(0.005) (0.006) (0.006) (0.006)
A (Log) COVID-19 Cases 0.013%**
(0.000)
A (Log) Wage 0.053*** 0.043*** 0.057*** 0.043***
(0.001) (0.001) (0.001) (0.001)
Observations 15,069,613 15,069,613 12,799,581 15,069,613
Adjusted R? 0.001 0.022 0.001 0.024
Time FE No Yes No Yes
Cohort FE No No No Yes

(¢) Family Network

A Share Relatives Adopters 0.734%** 0.420%** 0.568*** 0.378%***

(0.007) (0.009) (0.009) (0.009)
A (Log) COVID-19 Cases 0.013%**

(0.000)

Observations 10,456,216 6,750,537 5,645,335 6,750,537
Adjusted R? 0.001 0.023 0.002 0.026
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table 16: Changes in Intensity of Usage using Davis and Haltiwanger (1992) and Network
Changes

Dependent variable: %A Value of Transactions

(a) Neighbors Network (1) (2) (3) (4)

A Share Neighborhood Adopters — 2.853*** 0.918*** 4.442%F* 0.246%**
(0.019) (0.030) (0.022) (0.029)

A (Log) COVID-19 Cases 0.01 7%

(0.000)
Observations 25,632,610 25,632,610 21,858,049 25,632,610
Adjusted R? 0.001 0.023 0.002 0.028
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

A Share Coworkers Adopters 0.716%** 0.229%** 0.682%** 0.159%**
(0.007) (0.007) (0.007) (0.007)
A (Log) COVID-19 Cases 0.023%**
(0.000)
A (Log) Wage 0.068*** 0.061*** 0.080*** 0.061***
(0.001) (0.001) (0.001) (0.001)
Observations 16,208,557 16,208,557 13,482,422 16,208,557
Adjusted R? 0.001 0.029 0.002 0.034
Time FE No Yes No Yes
Cohort FE No No No Yes

(c) Family Network

A Share Relatives Adopters 0.781%** 0.416%** 0.708%*** 0.338%***

(0.009) (0.009) (0.009) (0.009)
A (Log) COVID-19 Cases 0.023%**

(0.000)

Observations 11,275,971 11,275,971  9.452.870 11,275,971
Adjusted R? 0.001 0.025 0.001 0.029
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table I7: Changes in Intensity of Usage using Inverse Hyperbolic Sine and Network Changes

Dependent variable: %A Value of Transactions

(a) Neighbors Network (1) (2) (3) (4)

A Share Neighborhood Adopters — 5.168*** 2.077F*¥*  15.829%*F  _(0.53TH**
(0.078) (0.104) (0.080) (0.103)

A (Log) COVID-19 Cases 0.038%x*x*

(0.001)
Observations 25,632,610 25,632,610 21,858,049 25,632,610
Adjusted R? 0.000 0.026 0.003 0.034
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

A Share Coworkers Adopters 2.432%** 0.764%** 0.682*** 0.498%***
(0.024) (0.023) (0.007) (0.023)
A (Log) COVID-19 Cases 0.023%**
(0.000)
A (Log) Wage 0.106%%%  0.112%%%  (.080%%*  (.111%%
(0.003) (0.002) (0.001) (0.002)
Observations 16,208,557 16,208,557 13,482,422 16,208,557
Adjusted R? 0.001 0.035 0.002 0.043
Time FE No Yes No Yes
Cohort FE No No No Yes

(¢) Family Network

A Share Relatives Adopters 2.1471%** 1.063*** 2. 257X 0.767+**

(0.029) (0.029) (0.029) (0.029)
A (Log) COVID-19 Cases 0.082%**

(0.001)

Observations 11,275,971 11,275,971 9,452,870 11,275,971
Adjusted R? 0.001 0.030 0.002 0.037
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table I8: Weighted Changes in Intensity of Usage and 2021 Network Changes)

Dependent variable: %A Value of Transactions

(1) (2) 3)
Logs Davis & Haltiwanger Inverse hyperbolic sine
A Share Adopters in 2021 Network — 2.010%** 1.766%+* 4.922%H*
(0.012) (0.008) (0.030)
Observations 23,680,468 25,635,895 25,635,895
Adjusted R? 0.018 0.026 0.028
Time FE Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors, clustered by individual, are in
parentheses.

Table 19: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff
Dependent Variable: A Value of transactions (inverse hyperbolic sine)
(1) (2) (3) (4)

AN@oworkers 4 Qg% 3 JGEFRE 9 4R%FK ] A78HF
(0.509)  (0.552)  (0.588)  (0.595)

Alnwage; 0.842%#% (. 739%** (. 871***
(0.157)  (0.157)  (0.166)
ACovid,; 0.333%F*  (.247H%*

(0.065)  (0.076)

Observations 1,554 1,554 1,554 1,554
Adjusted R? 0.063 0.111 0.127 0.168
Time FE No Yes Yes Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, until December 2021. Standard errors
are in parentheses.
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Table 110: Changes in Intensity of Usage and 2021 Network Changes

Dependent variable: %A Number of Transactions
Logs Davis & Haltiwanger THS

(1) (2) 3)
A Share Adopters in 2021 Network — 1.825%** 1.870%** 1.987#%*
(0.007) (0.007) (0.007)
Observations 23,672,905 25,628,936 25,628,936
R-squared 0.022 0.029 0.026
Time FE Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015, when
the technology was introduced, to December 2021. Standard errors, clustered by individual, are in
parentheses.

Table I11: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff (within
coworkers)

Dependent Variable: A Number of transactions (inverse hyperbolic sine)
(1) (2) (3) (4)

ANgoworkers ] 334k ] QTEE () 8RRFHK (. 831K
(0.138)  (0.159)  (0.176)  (0.185)

Alnwage; 0.363%F*%  (.353%F* (), 370%**
(0.041)  (0.042)  (0.046)
ACovid,; 0.034*  0.036

(0.020)  (0.024)

Observations 1,554 1,554 1,554 1,554
Adjusted R? 0.057 0.095 0.096 0.082
Time FE No Yes Yes Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, to December 2021. Standard errors,
clustered by individual, are in parentheses.

J Details on Mass Layoffs

This section provides additional details on the choices made to construct the variables and

sample used in Section 8.4

Definition of a mass layoff To define a mass layoff, we follow Davis and Von Wachter
(2011) and identify establishments with at least 50 workers that contracted their monthly
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Table J12: Mass Layoffs: Descriptive Statistics

Number of firms 856

Number of displaced workers 29 620

who had not adopted SINPE when fired ’

Number of displaced workers 9 585

who had adopted SINPE when fired ’

Average firm size 529 (2147)

Average monthly wage pre-layoff, laid-off workers — $504  ($623)
Average monthly wage pre-layoff, all workers $663  ($487)

Notes: Standard deviations for mean variables are reported in parenthesis. We consider layoffs that
reduce in 30 workers or more the size of firms with at least 50 workers, and limit the analysis to workers
with a period of unemployment of 6 months or less. Wages were calculated based on an exchange rate
of 634 colones per dollar and the last month in which workers were employed. We include mass layoffs
which occurred between May 2015, when the technology was introduced, and December 2021. The last
row includes the average monthly wage pre-layoff for all workers who were employed at those firms at the
time of the mass layoff.

employment by at least 30% and which did not recover in the following 12 months. We define
a recovery as a firm which went back to its initial size (or above) within the following 12
months. Given this definition, the descriptive statistics of firms and workers impacted by a

mass layoff are reported in Table J12.

Definition of variables We construct several variables that are used in equation (44). We

now provide more details on each of them.

e Adopt; equals one if individual ¢ adopted SINPE within 6 months after arriving to her
new firm, and zero otherwise. This variable is only computed for individuals who found
a job within 6 months of being fired. Results are robust to considering shorter unem-

ployment spells, including conducting the analysis using only job-to-job transitions.

o ANgowerkers i the change between the share of coworkers who had adopted at the old
and the new employer. We compute this variable by calculating the difference between
(i) the share of adopters at the old firm on the last month in which the individual was
employed and (ii) the share of adopters at the new firm in month ¢, and considering

only months ¢ after the individual was hired at the new firm.

e Alnwage; corresponds with the change in the average wage (in logs) across 6 months

before the layoff and after the rehiring.
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e Alnsize; is the change in the number of workers (in levels) at the new firm versus the
old firm.

e date hired; controls for the month in which individual ¢ was hired by the new firm.

e ACovid; controls for the change in the cumulative COVID-19 cases (transformed using
the inverse hyperbolic sine function) in the individual’s neighborhood across the 6
months before the layoff and after the rehiring. This change is zero for pre-pandemic
years, thus, this variable is introduced using an inverse hyperbolic sine transformation,

as opposed to a logarithm.

The regression described in equation (45) relies on the same variables that we described

above, but also includes additional ones which we now describe.

e Aln¢; refers to the change in monthly intensity with which individual 7 used SINPE
within 6 months after arriving to her new firm compared with 6 months before being
fired. We only compute this variable for workers who had adopted SINPE more than
6 months before being fired, in order to attenuate any effect coming from a “learning
curve.” We transform éz using the inverse hyperbolic sine function, as zeros are common
in the monthly data. Note that this inflates coefficients, particularly, for large values
of intensity, which are likely to appear when the left-hand-side variable describes the

total value (as opposed to the number) of transactions.

e cohort; controls for the month when individual ¢ adopted SINPE. We include this

variable to attenuate any effect coming from learning how to better use the app.

e In Zt éz is the sum of all historical transactions made by agent i since she adopted the
app. This variable has no zeros by construction, as our definition of adoption is that the
individual has used the app at least once. Similarly to cohort; , the variable intends to
control for learning how to use the app thanks to having more people in your network

who have adopted it.
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