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1 Introduction

The cross-sectional distribution of firms shows enormous variation, not only in size but also in the

extent and nature of product offerings. The largest firms in an industry are often several orders of

magnitude larger than the median firm. Some firms offer a large number of products or operate

across a number of locations while others are more limited in scope. At the heart of these vast

differences across firms are returns to scale and scope, which determine the costs of expanding

operations. In his seminal work, Alfred Chandler (1990) emphasized that the hallmark of a modern

economy is large enterprises that can take advantage of returns to scale and scope, and are large,

in part, because they do so.

In this paper, we study, both theoretically and empirically, a fundamental source of returns

to scale: standardization. We analyze the problem of a multi-unit firm in an otherwise standard

model of heterogeneous, monopolistically competitive firms in the tradition of Hopenhayn (1992)

and Melitz (2003). Firms choose scope (the number of units), standardization (the extent of sim-

ilarity between these units) and quality (the value derived by the customer from each product).

To make these concepts concrete, consider the product portfolio of a manufacturing firm. Each

product is a bundle of features. Features can be scalable across products (firm-wide) or local (i.e.

product-specific). A firm achieves greater standardization by investing more heavily in developing

features shared by multiple products, i.e. in scalable expertise. For example, the furniture man-

ufacturer IKEA designs its furniture so that many parts are identical across products, including

interchangeable components like screws, connectors, and cam locks. These standardized elements

simplify production and reduce costs as the same parts can be used in multiple product lines. These

ideas are also relevant in the service sector, with units appropriately re-interpreted as branches or lo-

cations and features interpreted as processes. Consider Starbucks, which has developed streamlined

procedures and standardized training programs for baristas that are used across all its locations.

Our analysis begins with a simple version of the model, in which firms differ only in an exogenous

demand (or productivity) shifter and investment in expertise is limited by a firm-level capacity

constraint. Later, we show how the main insights carry over to a more general setting with richer

cost structures and heterogeneity.

Our first set of results shows that standardization and scope interact to amplify exogenous

differences (or changes) in firm-level fundamentals. An increase in demand sets off a chain of

mutually reinforcing actions. It directly leads to an expansion of scope, which raises the value of

standardization. In turn, this reduces the need for product-specific investments, making adding

products even more attractive.

Second, the theory predicts that the extent of amplification is heterogeneous. The effect of

demand on firm size is increasing in the degree of standardization – more precisely, in the scalable

share (the fraction of the firm’s investment in expertise that is scalable). Before discussing the

intuition, it is worth noting why the scalable share varies across firms. When scalable and local
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expertise are relatively substitutable in determining product quality – a natural assumption in our

setting – incentives to invest in scalable expertise rise more than proportionately with increases in

scope and so, the scalable share increases with demand.1

Since higher scalable shares imply greater responsiveness to demand, the positive correlation of

size and scalable shares means (log) firm size is convex in (log) fundamentals (unlike the log-linear

relationship in Melitz (2003)).2 Moreover, a rise in industry demand leads to an increase in the

relative size of large firms, or equivalently, in market concentration.

Third, this heterogeneity in standardization also has normative implications, in particular for

the effects of taxes and subsidies. In our setting, markups distort production, making subsidies

welfare-improving. Our theory implies that, at the laissez-faire equilibrium, the social return per

dollar of subsidy is heterogeneous – specifically, it is increasing in scalability. That is, if resources

available for subsidies are limited, rendering a full offset of markups infeasible, it is optimal to tilt

subsidies towards scalable firms.

Underlying these results is how standardization mediates the relationship between a firm’s

marginal costs and its scale. Formally, marginal returns to scale (MRTS), defined as (minus) the

elasticity of marginal costs with respect to output, is increasing in the scalable share. Note that,

as pointed out by Menger (1954) and Shephard (1953), MRTS is distinct from average returns to

scale (ARTS), which measures how a firm’s average cost changes with output.3 E.g., a production

function with a fixed cost and a constant unit cost, as in, e.g., Dixit-Stiglitz, Krugman, or Romer

has marginal cost that is invariant to size (MRTS = 0), but average cost declining with size. MRTS

(along with the curvature of demand) is the key determinant of responses to change in demand.4

When demand rises, a high MRTS firm—whose marginal costs rises more slowly with output—has

a stronger incentive to increase its size. This intuition also explains why MRTS (and, therefore,

standardization) is key to characterizing the marginal social return per dollar of subsidy.

Why does standardization affect MRTS? When products are relatively less standardized, ex-

panding scope requires larger product-specific investments, steepening the firm’s effective marginal

cost curve. In contrast, scalable firms can increase the number of products they offer with a smaller

marginal cost penalty. In this sense, these firms embody Chandler’s insight: higher returns to scale

(i.e. a flatter marginal cost curve) enables them to grow larger. For example, the standardized and

interchangeable nature of its parts allows IKEA to offer a larger suite of products than a manu-

facturer whose products have less in common with each other.5 Similarly, Starbucks can operate

1In the baseline model with only one source of heterogeneity, size and standardization are tightly linked. With
additional sources of heterogeneity, size and scalable share need not be perfectly correlated.

2This mechanism can, under some conditions, become so powerful that size follows a power law distribution even
with a bounded distribution of exogenous productivity/demand.

3ARTS is also equal to the ratio of marginal cost to average cost minus 1. When ARTS is higher (lower) than 0,
the firm is said to exhibit decreasing (increasing) returns to scale.

4As Lashkari et al. (2024) show, ARTS along with the elasticity of demand—which governs the markup—determine
the revenue-to-cost ratio of the firm.

5The connection between standardization and costs can take many forms. One incarnation, Eli Whitney’s inter-
changeable parts or Henry Ford’s assembly line standardize a process to make the production process more efficient,
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more locations more efficiently thanks to its investments in standardization. Crucially, the scalable

share captures the key forces driving these results: we show that it remains a sufficient statistic for

MRTS and responsiveness to demand under fairly general conditions.

In Sections 3 and 4, we take our theory to the data. We propose a firm-level measure of

standardization using detailed information on attributes of consumer goods products from the

NielsenIQ dataset. Guided by the theory, our measure captures the extent to which the products

in a firm’s portfolio share common characteristics. We then test the model’s predictions, about

cross-sectional patterns as well as the more stringent ones about responsiveness to shocks.

First, we show that standardization is positively correlated with firm size and scope. Next, to

test the model’s prediction about responsiveness to shocks, we construct a demand shock based on

the intensity of competition from Chinese imports, following Autor, Dorn and Hanson (2013). We

find support for the central prediction of the theory: standardization is associated with a greater

responsiveness (of size, scope, and standardization itself) to demand shocks. This finding can also

be interpreted as validating our assumption that standardized and non-standardized characteristics

are substitutes, in which case standardization is linked to higher marginal returns to scale. Third,

we examine implications for market concentration. We show that, consistent with the theory,

sectors where standardization covaries more strongly with firm size in the cross-section experience

larger increases in concentration when demand rises. Finally, we return to the prediction that more

standardized firms respond more to shocks using the National Establishment Time Series (NETS)

data. While we do not have information to measure standardization directly for this set of firms, we

find that firms with higher size (employment) or scope (number of establishments) respond more

to changes in demand.6

While our baseline model is static, Section 5 presents empirical patterns relating standardiza-

tion to firm and industry dynamics. First, we study standardization within innovation bursts.

Berlingieri, De Ridder, Lashkari and Rigo (2024) show that such episodes play a central role in

driving variation in firm-level growth, industry concentration and growth. We show that when a

firm introduces a set of new products, if the new products are more standardized then they tend

to comprise a larger innovation burst. Second, we demonstrate a connection between within-firm

standardization and knowledge diffusion. New characteristics introduced by firms with a history

of standardization are more likely to be adopted by other firms. This suggests that changes in

incentives to standardize lead to ideas that can spill over to the whole industry. It also suggests

underinvestment in standardization.

i.e. lower the unit cost. These examples are similar in spirit to the ones we pursue. In their simplest interpreta-
tion, they reflect purely returns to scale: they lower unit costs. An alternative version, closer to our model, is that
interchangeability of parts lowers the cost of introducing new products.

6This is consistent with Chan, Hong, Hubmer, Ozkan and Salgado (2024), who find that returns to scale are
systematically higher for larger firms.
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Related Literature: Our analysis is related to a number of different strands in the literature on

firm heterogeneity and dynamics. On the theory side, we contribute a novel theory of endogenous

size, scope and returns to scale to the firm dynamics literature in the tradition of Hopenhayn

(1992) and Melitz (2003). A strand of this literature studies models of endogenous scope.7 In some

of these models (though not all), firms invest along the intensive margin (e.g. in improving the

productivity/quality of each unit). We emphasize – and endogenize – the degree of standardization

across units and show how it shapes returns to scale and responses to fundamentals. Our interest in

returns to scale is shared by a few recent papers. Engbom, Malmberg, Porzio, Rossi and Schoellman

(2024) explore the role of different types of labor in generating heterogeneous returns to scale. Chan,

Hong, Hubmer, Ozkan and Salgado (2024) estimate production functions with heterogeneous returns

to scale and find that RTS is systematically higher for larger firms.

A growing literature examines how intangible capital of different types shapes firm-level out-

comes. These include R&D (Hoberg and Phillips, 2025), knowledge inputs (Ding, 2023), software

and ICT (Rubinton, 2020; Jiang and Rubinton, 2024; Lashkari, Bauer and Boussard, 2024), man-

agerial inputs (Lucas, 1978; Akcigit, Alp and Peters, 2021; Chen, Habib and Zhu, 2023; Grobovšek,

2020) and headquarters services (Kleinman, 2022). The non-rival nature of these inputs leads to

increasing returns to scale by enabling firms to spread fixed costs or knowledge across multiple

units or products (Bilir and Morales, 2020; Crouzet et al., 2024). Relative to this literature, our

paper makes several contributions. First, we highlight standardization as a distinct mechanism

that also facilitates scalability. Second, we develop a measure of standardization in a multi-product

setting. Third, we develop several subtle predictions of the theory and validate them empirically.

Finally, several recent papers argue that advancements in information and communication tech-

nologies (ICT) may have facilitated the rise of large firms, e.g. Hsieh and Rossi-Hansberg (2020),

Aghion, Bergeaud, Boppart, Klenow and Li (2019), De Ridder (2019), Mariscal (2018), Rubinton

(2020), and Lashkari, Bauer and Boussard (2024). We highlight a different mechanism—investments

in standardization lead to heterogeneous marginal returns to scale, which implies that a common

increase in demand can, on its own, increase concentration.8

More broadly, our analysis pinpoints the importance of the elasticity of substitution between scal-

able and non-scalable investments. By mediating how scalable investments shape a firm’s marginal

returns to scale, it governs firms’ responsiveness to shocks, and hence how common shocks affect

concentration and which firms should be targeted with optimal industrial policy. This elasticity

has received little attention, theoretical or empirical, in much of the existing work on intangible

7Scope is interpreted either as multiple product lines – as in e.g. Klette and Kortum (2004), Akcigit and Kerr
(2018), Peters (2020), Garcia-Macia, Hsieh and Klenow (2019), Bernard, Redding and Schott (2011), Dhingra (2013),
and Nocke and Yeaple (2014) – or multiple establishments, as in e.g. Luttmer (2011), Holmes (2011), Cao, Hyatt,
Mukoyama and Sager (2020), Hsieh and Rossi-Hansberg (2020), and Rossi-Hansberg et al. (2021).

8A rise in concentration has been emphasized by, e.g., Autor, Dorn, Katz, Patterson and Van Reenen (2020) and
Barkai (2020). Rossi-Hansberg et al. (2021), Hsieh and Rossi-Hansberg (2020), and Benkard, Yurukoglu and Zhang
(2021) show that this rise has been fueled by expansion of scope (across geographic or product markets) by the
largest firms.
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inputs.9

Our main empirical exercise, which relates standardization to the effects of the widely-studied

“China shock,” speaks to the literature following Autor, Dorn and Hanson (2013). Our finding

that scalable firms were the most responsive echoes that of Holmes and Stevens (2014), who find

that import competition in the furniture industry had a disproportionate impact on larger plants

relative to smaller, more ‘specialty’ plants.10

2 Model

This section presents a theory in which heterogeneous firms choose the scope and size of their

operations. The model makes a number of predictions about the cross-sectional distribution of firm

size, responses to shocks, and concentration. In the subsequent sections, we take these to data on

multi-product and multi-establishment firms.

Our starting point is the canonical model of monopolistic competition by heterogeneous firms

widely used in macroeconomics and trade. Firm i in sector j produces a composite output that is

a CES aggregate of a continuum of products (index: u):

Qij =

[∫ Nij

0

(Quij)
1− 1

ε du

] ε
ε−1

,

where Quij denotes the quantity of product u, Nij the (endogenous) measure of products and ε is

the elasticity of substitution across products.

The composite output of sector j is also a CES aggregate of the firm-level composites, with

elasticity of substitution θ. This implies the following demand function for product u of firm i:

Quij =

(
Puij
Pij

)−ε(
Pij
Pj

)−θ
Qj ,

where Qj denotes sector-wide output while Pj and Pij are the ideal price indices for the sector and

9Two exceptions are Koh and Raval (2025) and Jiang and Rubinton (2024). Koh and Raval (2025) use our
framework to study shared and non-shared inputs among large firms. In the 1970s, the FTC surveyed roughly 500
large firms about their use of inputs across different production lines. The firms were asked to trace the portion
of each input that was used by each line as well as the portion that was shared across lines (the two inputs with
the largest portion shared across lines were management and capital). In line with our theory, they find that larger
firms, as measured by size or scope, had a higher fraction of expenditures that were shared across lines. Further,
using a production function estimation approach, they find that local and scalable inputs are indeed substitutes.
In their study of software, Jiang and Rubinton (2024) estimate that, once a fixed cost has been paid, software is a
complement of other inputs.

10It is also related to Aghion, Bloom, Lucking, Sadun and Van Reenen (2021), who find that firms with more
centralized management – an example of more scalable (or firm-wide) investments – were more sensitive to the
turbulence of the Great Recession, even controlling for size. Other papers studying the effects of demand shocks on
firms include Mayer, Melitz and Ottaviano (2020), Hyun and Kim (2019), Park (2020), Lileeva and Trefler (2010),
Bustos (2011), and Baldwin and Gu (2009).
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the firm respectively:

Qj =

[∫
(Qij)

1− 1
θ di

] θ
θ−1

, Pj =

[∫
P 1−θ
ij di

] 1
1−θ

, P 1−ε
ij =

[∫ Nij

0

(Puij)
1−ε du

] 1
1−ε

.

Production is linear in labor input Luij, i.e.

Quij = AijZuijLuij .

The productivity of the firm has an exogenous (firm-specific) component, Aij and an endogenous

part, Zuij, which we term expertise and describe in detail later. The firm is subject to a fixed

operating cost that depends on the measure of products it offers, Fj(Nij). Appendix A.1 shows

that the profits of the firm (revenues net of wages) are given by:

Πij = Gj

(∫ Nij

0

(AijZuij)
ε−1du

) θ−1
ε−1

−Fj(Nij) (1)

where Gj is a common (i.e. sector-wide) equilibrium coefficient that scales firms’ profits.

In what follows, we lighten notation by suppressing the sector subscript j.

Expertise We model expertise as a productivity shifter, but interpret it more broadly as increased

profitability. Importantly, the expertise relevant to a particular product u is a combination of two

types of knowledge – scalable (or firm-wide) or local (product-specific). The former, denoted xi, is

the same for all products of the firm, while the latter, yui, reflects knowledge unique to a product.

Formally, Zui = Z(xi, yui), where Z(x, y) is increasing in both arguments. This flexible formu-

lation can accommodate rich interactions between the two forms of knowledge. One feature that

will be important is the extent to which the two are substitutable. We impose that Z(x, y) is

homogeneous of degree 1, i.e. Z(x, y) = yz(k) where k ≡ x
y

and z(k) ≡ Z(k, 1). We refer to k as

the firm’s scalability ratio.

Investment in expertise is subject to costs C(xi, {yui}). In Section 2.2, we consider a simple

specification – a capacity constraint – before turning to a more general formulation in Section 2.3.

2.1 Product Characteristics: A Micro-foundation For Expertise

In this subsection, we characterize the expertise function Z(x, y) in a multi-product setting where

expertise is embodied in product characteristics. While this micro-foundation is not crucial for our

theoretical results, it will guide our empirical strategy for measuring standardization.

A firm has a portfolio of products, u = 1, ..., N . Each product has a (finite) set of attributes,

indexed by a = 1, ...,A. As an example, consider oral care products offered by Colgate-Palmolive.

Attributes include “flavor”, “size”, “color”, “packaging”, or “ingredients”. For every product-
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attribute pair (e.g. “flavor” of a particular toothpaste), the firm chooses a characteristic from an

exogenously given set. The set contains 2 elements – one that is present in choice sets for all

products (referred to as the “scalable” characteristic) and one specific to that product (or “local”

characteristic).11 For “flavor”, a scalable characteristic could be “mint”, used across a range of

products, while a local characteristic is a more unique flavor used only for specific products.12

Each product has an effective quality (or appeal) that is a composite of the quality of each of

its attributes. Formally, let bua denote the quality of attribute a for product n. Then, the effective

quality of the product Zu is given by

Zu =

(
A∑
a=1

bη−1
ua

) 1
η−1

. (2)

For attribute a of product u, a firm can choose the scalable characteristic, which has quality bxua, or

the local characteristic, which has quality byua, so that bua = max{byua, bxua}.
The characteristic-level qualities are random, but depend on the firm’s investments in expertise.

Given an investment I, the quality of the characteristic is drawn from a distribution with cumulative

distribution function e−(b/I)−ν , with ν > max(0, η − 1). If xa is the investment in the scalable

characteristic for attribute a, then Pr(bxua ≤ b) = e−(b/xa)−ν . Similarly, if yua is the investment in

the product-specific characteristic for attribute a for product u, then Pr(byua ≤ b) = e−(b/yna)−ν . The

distribution of the product-attribute quality bua = max{bxua, byua} is then given by Pr(bua ≤ b) =

e−(xνa+yνua)b−ν .

Total investment across characteristics is
∑

a (xa +
∑

u yua). Given the symmetry across at-

tributes and products, the firm will choose the same investment in scalable characteristics across

attributes (i.e. xa = x) and the same investment in local characteristics across all products and

attributes (i.e. yua = y). Thus, total investment is A (x+Ny). As the number of attributes A
grows large, the law of large numbers implies that product quality converges to

lim
A→∞

Zu = Γ

(
1− η − 1

ν

) 1
η−1

(xν + yν)
1
ν ≡ Z(x, y).

Under these conditions, a firm’s investment in scalable expertise can be measured using infor-

mation on product-level attributes. Define a firm’s scalability index, SI as one minus the share

of unique characteristics in a firm’s product portfolio. The share of unique characteristics is the

number of unique characteristics across all the products of the firm by the total number of possible

11The assumption that there is only one characteristic of each type in the set is only for simplicity in exposition
and is not crucial; it is straightforward to allow for multiple scalable and product-specific characteristics.

12Other examples of scalable characteristics in Colgate-Palmolive’s portfolio include antibacterial agents and fluo-
ride while local characteristics include additives for whitening and formulation options (such as alcohol-free mouth-
wash). To take another example, in Sephora’s private-label skincare lines, scalable characteristics include standard-
ized packaging, such as airless pump bottles and glass jars, while local characteristics include specialized ingredients
like hyaluronic acid and vitamin C.
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characteristics that could appear. A high SI indicates that the firm’s products share many char-

acteristics; i.e., the number of unique characteristics is relatively small. As N becomes large, SI
1−SI

converges to
(
x
y

)ν
.13 We leverage this insight in Section 4.1 to construct a measure of standardiza-

tion at the firm level.

2.2 A Tractable Special Case

In this subsection, we make a number of simplifying assumptions that allow us to demonstrate the

key economic forces at work in a transparent fashion. These assumptions will be relaxed in the next

subsection, which will show that the key results obtain in a more general setting as well.

First, we set θ = ε = 2, i.e. the within- and across- firm substitution elasticities are assumed to

be equal to 2. Then, F(Ni) = FNi, i.e. the fixed operating cost is linear in the number of products.

Then, the expression for profits in (1) simplifies to

Πi = G

∫ Ni

0

AiZuidu− FNi. (3)

Next, the cost of expertise is modeled as a capacity constraint:

xi +

∫ Ni

0

yui du ≤ 1. (4)

One interpretation of this formulation is that expertise requires managerial attention, which is

limited at the firm-level. Finally, we assume that scalable and local components enter a firm’s

expertise with a constant elasticity of substitution:

Assumption 1 Expertise is a constant elasticity function of scalable and local components

Zui = Z(xi, yui) =
(
x
σ−1
σ

i + y
σ−1
σ

ui

) σ
σ−1

0 < σ < 2 .

The upper bound on σ ensures an interior solution to the firm’s problem.

Note that the product characteristics formulation in Section 2.1 satisfies this assumption with

σ = 1
1−ν . Since ν > 0, this micro-foundation of expertise implies σ > 1, i.e. scalable and local ex-

pertise are gross substitutes. Accordingly, we view σ > 1 as the natural case, but, for completeness,

13For each attribute, the number of unique characteristics is the sum of the number of unique local characteristics
and the number of unique scalable characteristics. The probability that a local characteristic is used is yν

xν+yν . Since
this likelihood is independent across products, as the number of products grows large, the proportion of unique local
attributes converges to its expected value, yν

xν+yν . For each attribute, the number of unique scalable characteristics is
bounded between 0 and 1, so the proportion of product-attributes populated by scalable characteristics is bounded
above by 1/N , which converges to zero as N grows large. As a result,

SI = 1− # unique char.

N ×A
= 1− # unique local char.

N ×A
− # unique scalable char.

N ×A
→ 1− yν

xν + yν
− 0 =

xν

xν + yν

.
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we present all results for general σ.

The firm’s problem Firm i’s problem can thus be written as:

max
Ni,xi,yui

G

∫ Ni

0

AiZ(xi, yui)− FNi s.t. xi +

∫ Ni

0

yui du ≤ 1. (5)

We begin by noting that, at the optimum, the firm will choose the same level of expertise for

each product, i.e. Zui = Zi, or equivalently, yui = yi, which simplifies the problem to

max
Ni,xi,yi

G AiNiZ(xi, yi)− FNi s.t. xi +Niyi ≤ 1. (6)

Since the capacity constraint will bind at the optimum, it can be rearranged as yi = 1
xi/yi+Ni

. We

can use this to express expertise in terms of scope and the scalability ratio, ki ≡ xi/yi: Z(xi, yi) =

yiz(ki) = z(ki)
ki+Ni

. The problem thus reduces to a choice over scope and the scalability ratio:

max
Ni,ki

G AiNi
z(ki)

ki +Ni

− FNi. (7)

The solution is characterized by the following first-order conditions:

ki :
kiz
′(ki)

z(ki)
=

ki
ki +Ni

≡ Si (8)

Ni : GAi
z(ki)

ki +Ni

− F = GAi
Ni

ki +Ni

z(ki)

ki +Ni

, (9)

Equation (8) equates the cost and benefits of making expertise more scalable (for a given scope

Ni). The right hand side is the share of capacity devoted to scalable expertise, ki
ki+Ni

= xi
xi+Niyi

. We

term this the scalable share and denote it by Si. At the optimum, Si is equated to the elasticity of

expertise to scalable knowledge, kiz
′(ki)

z(ki)
= xZx

Z
= k

σ−1
σ

k
σ−1
σ +1

. This elasticity is increasing (decreasing)

in ki if the elasticity of substitution between the two forms of expertise, σ, is larger (smaller) than

1. This implies that when x and y are gross substitutes, the scalable share Si and the scalability

ratio ki are positively related.

Equation (8) can also be rearranged as a relationship between the scalability ratio and scope:

Zy
Zx

=
z(ki)− kiz′(ki)

z′(ki)
= Ni . (10)

Thus, at the optimum, the firm equates the marginal benefit of increasing scalable expertise, NZx,

to that of the non-scalable component NZy
N

= Zy. The marginal rate of substitution Zy
Zx

is increasing

in the scalability ratio ki, so this equation describes a positive relationship between scope and

scalability ratio.
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Let K(N) denote the optimal ki as a function of scope. Note that d lnK
d lnN

= d ln k

d ln
Zy
Zx

= σ. When

σ > 1, xi/yi rises more than one-for-one with Ni. Since Si
1−Si = xi

Niyi
, this implies that the scalable

share rises as well. In other words, when σ > 1, the scalable share and the scalability ratio are

positively linked. This insight will prove useful in interpreting our empirical results.

Equation (9) determines the optimal scope for a given ki. Here, the fixed capacity leads to a

tradeoff: the extra variety increases revenue but raises the firm’s fixed cost and requires expertise.

This equation can be rearranged to yield an expression for optimal scope as a function of ki and Ai:

N(ki;Ai) = ki

[(
GAi
F

z(ki)

ki

)1/2

− 1

]
. (11)

Figure 1: Scalability and Scope

Substitutes (σ > 1) Complements (σ < 1)

(a) Scalability Ratio and Scope (a) Scalability Ratio and Scope

Log x/y
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g
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g
N
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High A

(b) Scalability Ratio and Total Revenue (b) Scalability Ratio and Total Revenue

Log x/y
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g
R
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Log x/y

Lo
g
R
ev
en
ue

Low A

High A

Note: The dashed line in panel (a) plots (10), while the solid lines plot (11) for two values of Ai. The solid lines in
(b) plot revenue R (k,N(k;Ai);Ai), as a function of the scalability ratio for two values of Ai. In the left two panels
(Substitutes), we use σ = 1.5 and GAi

F = 0.2 and GAi
F = 0.4 for the two solid lines. For the right two panels, the

corresponding values are σ = 0.67, GAi
F = 10 and GAi

F = 20.
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The left panel of Figure 1 shows equations (10) and (11) on a log-log plot. The solid line

displays (10), while the dashed ones show (11) for two levels of Ai.
14 The panel also depicts

how the optimal choice of scalability and scope amplify exogenous differences in productivity (or

equivalently, demand). Higher Ai shifts the dashed line upward (note that the solid line, equation

(10), is independent of Ai). The arrows show successive rounds of adjustment. Higher productivity

induces a larger scope, holding ki fixed (the first vertical arrow). This in turn leads to an increase

in ki (the first horizontal arrow), which feeds back into further scope increases and so on.

This amplification mechanism can turn explosive under some conditions – specifically, for high

enough σ and/or Ai. In these cases, the firm finds it optimal to set ki, Ni →∞. Intuitively, when

scalable expertise is very substitutable with the local kind, a high productivity firm’s incentives

to accumulate scalable expertise are very strong, leading to a corner solution. We assume that

parameters are such that this case is precluded.

To show this amplification formally, we first express the optimal scope using the functions, K(·)
and N(·), i.e. Ni = N(K(Ni);Ai). Differentiating and rearranging gives:

d lnN

d lnA
=

∂ lnN
∂ lnA

+
∂ lnN
∂ ln k

d lnK
d lnN

d lnN

d lnA
=

∂ lnN
∂ lnA

1− ∂ lnN
∂ ln k

d lnK
d lnN

. (12)

The denominator in (12) captures the amplification: an increase in Ai sets off the sequence of

mutually reinforcing changes we saw in the top panels of the figure. We can use (11) to derive15

∂ lnN
∂ ln k

=
1

2
(13)

∂ lnN
∂ lnA

=
1

2

1

1− Si
. (14)

Thus, firms who use a relatively larger share of capacity for scalable expertise (high Si) adjust

their scope by more in response to changes in Ai (holding ki constant). Intuitively, increasing scope

involves not only an additional fixed cost F but also investment in product-specific expertise. When

such expertise is relatively small (Si is high), increasing scope exerts less pressure on the capacity

constraint, i.e. induces a smaller reduction in expertise. In this sense, scalable firms face a lower

effective cost of adding units and, therefore, have a more elastic scope margin. As we will show,

this intuition extends to a more general setting.

14Equation (11) can be hump-shaped, but the intersection will always be in the upward sloping part.
15To derive (13), re-arrange (9) as (k+N(k;A))2

kz(k) = GA
F , take logs and differentiate implicitly to obtain 2

k+N ∂ ln N
∂ ln k

k+N −
1− kz′(k)

z(k) = 0. Solving for ∂ lnN
∂ ln k and noting that kz′(k)

z(k) = S from (8) yields

∂ lnN
∂ ln k

=
1
2 (1 + S)− k

k+N
N
k+N

=
1
2 (1 + S)− S

1− S
=

1

2
.
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Finally, using d lnK
d lnN

= σ, equations (12)-(14) can be combined to yield:

d lnN

d lnA
=

∂ lnN
∂ lnA

1− σ
2

=
1

2− σ

(
1

1− Si

)
> 0 . (15)

Thus, the elasticity of scope w.r.t productivity is increasing in the scalable share, Si. Recall that

when σ > 1, the scalable share Si is positively related to the scalability ratio ki. In this case, the

empirically relevant one for our applications, the elasticity of scope is increasing in ki.

This intuition directly extends to the responsiveness of the scalability ratio itself:

d ln k

d lnA
= σ

d lnN

d lnA
=

σ

2− σ

(
1

1− Si

)
> 0 .

Next, we turn to the effect of productivity on revenue Ri = GAi
Niz(ki)
ki+Ni

≡ R(ki, Ni;Ai).

d lnR

d lnA
=

∂ lnR
∂ lnA︸ ︷︷ ︸

=1

+
∂ lnR
∂ ln k︸ ︷︷ ︸

=0

d ln k

d lnA︸ ︷︷ ︸
>0

+
∂ lnR
∂ lnN︸ ︷︷ ︸
>0

d lnN

d lnA︸ ︷︷ ︸
>0

.

The first term is the direct effect, while the other two capture indirect effects (from induced

changes in scope and scalability). The second term is 0 by an envelope argument (since k is chosen

to maximize z(k)
k+N

). The last term reflects the effect of a change in scope on revenue. Scope directly

raises revenue, but also comes at the cost of lower expertise. The former dominates, so ∂ lnR
∂ lnN

> 0.

More interestingly, the cost in expertise from increased scope is smaller when the share of scalable

expertise is high, leading to a larger response of revenue:

∂ lnR
∂ lnN

= 1− Ni

ki +Ni

= Si .

Along with (15), this implies scalable firms experience a larger increase in size for a given change

in productivity: 16

d lnR

d lnA
= 1 +

1

2− σ
Si

1− Si
> 0.

We summarize these results in the following three propositions:

Proposition 1 Firms with higher productivity have higher total revenue, scope, scalability ratio

and (when σ > 1) scalable shares.

The second proposition states a key result: the scalable share is a sufficient statistic for the firm’s

16The impact of productivity on revenue per unit is more subtle. The direct effect is still equal to ∂ lnR
∂ lnA = 1, but

the indirect effect stemming from the change in scope is negative. In this simple case, the strength of the indirect
effect (and therefore, the sign of the total effect) depends on the degree of substitutability between scalable and local
expertise. If σ < 1, the direct effect dominates so revenue per unit rises with productivity. The opposite happens
if σ > 1. In the more general model below in which capacity can be increased at a cost, however, revenue per unit
may rise even if σ > 1.
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responsiveness to changes in demand or productivity. Note that the responsiveness to changes in

demand (e.g. due to a shift in the equilibrium shifter G) and productivity (Ai) are identical, as

these enter the firm’s profit function in the same way.

Proposition 2 Firms with a higher scalable share Si exhibit higher elasticities of scalability ratio,

scope, and size to common demand shocks G or idiosyncratic productivity Ai.

The next proposition expresses the result in Proposition 2 in terms of the scalability ratio xi
yi

. It

forms the basis of the tests presented in Section 4, where we construct a measure of the scalability

ratio at the firm-level and proxies for sectoral demand shocks. Recall that the scalable share and

the scalability ratio are positively related when σ > 1. This in turn implies that firms with higher

scalability ratios will be more responsive to changes in demand.

Proposition 3 When σ > 1, firms with higher scalability ratios exhibit higher elasticities of scala-

bility ratios, scope, and size to common demand shocks G or idiosyncratic productivity Ai.

The Elasticity of Substitution and Responsiveness to Shocks

In this subsection, we provide a graphical illustration of how the elasticity of substitution σ deter-

mines on the responses to a common demand shock.

Figure 2 shows the response of key variables to a change in G. The three left panels show the

case where σ > 1, the relevant one in our multi-product context, while the right panels show the

same variables when σ < 1. In each panel, two sets of lines are depicted – they show the effect of a

shift from G (red lines) to G′ (black lines) for two levels of productivity, A and A where A < A.

The top panels show the effect on the (logs) of the scalability ratio and the scalable share S.

The solid line shows combinations of k and S that are consistent with the optimal choice of k, i.e.

equation (8). The dashed lines show the combinations of k and S consistent with the optimal choice

of scope,equation (9). The optimal choice of the firm is the intersection of the dashed and solid

lines. These can respectively be rearranged as:

lnSi = ln
kiz
′(ki)

z(ki)
(16)

lnSi = −1

2
ln

(
z(ki)

ki
Ai

)
− 1

2
ln

(
G

F

)
. (17)

The right hand side of (16) is the elasticity of expertise to the scalable component, i.e. xZx
Z

. This

is increasing (decreasing) in the scalable ratio ki when the two types of expertise are relatively

substitutable (complementary), i.e. when σ is larger (smaller) than 1. The right hand side of (17)

is increasing in ki for all σ, so the dashed lines are increasing in both panels. Their curvature does

depend on σ: they are concave (convex) when σ is larger (smaller) than 1.
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Figure 2: Response to a Shock
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(a) Scalability Ratio and Share (b) Scalability Ratio and Share

Log x/y

Lo
g
S

AG
AG'

AG AG'

Log x/y
Lo
g
S AG

AG'
AG

AG'

(b) Scalability Ratio and Scope (b) Scalability Ratio and Scope

Log x/y

Lo
g
N

AG

AG'

AG

AG'

Log x/y

Lo
g
N

AG

AG'
AG

AG'

(c) Scalable Share and Scope (c) Scalable Share and Scope

Log
S

1 -S

Lo
g
N

AG

AG'

AG

AG'

Log
S

1 -S

Lo
g
N

AG

AG'

AG
AG'

Note: The dashed lines in (a) plot (17), while the solid line depicts (16). Panel (b) shows (10) in logs, while the
relationship in (c) is derived from (8). In the left panels (Substitutes), we use σ = 1.5 and A/F = 0.2 and Ā/F = 0.6,
with G = 1 and G′ = 1.3. For the right panels (Complements), the corresponding values are σ = 0.67, A/F = 10,
Ā/F = 30, and again G = 1 and G′ = 1.3.
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What happens when a common demand shock pushes G up to G′? Equation (16) remains the

same. Since G enters (17) log-linearly, increases in lnG induce parallel, downward shifts in the

dashed lines. Intuitively, higher demand implies a higher optimal scope and so, a lower scalable

share for all k. In both the left and right panels, the higher scope increases the incentive to

accumulate scalable expertise, so the new optimum features a higher scalability ratio. The effect

on the scalable share Si depends on σ: when σ > 1 (the left panel), the incentives to shift capacity

towards scalable expertise are very strong, so the scalability ratio rises more than proportionately

with scope, resulting in a higher scalable share.

How does a firm’s productivity A affect the response to a change in G? The answer depends

on whether σ is larger or smaller than 1, which determines the relationship between productivity

and the scalable share, S. If scalable and local expertise are substitutes (left panel), high produc-

tivity firms have higher scalable shares and so respond more. The opposite happens if they are

complements (right panel). The middle and bottom panels show that this pattern extends to the

scope: high productivity exhibit larger (smaller) changes in scope when the two forms of expertise

are substitutes (complements).

Marginal Returns to Scale

The intuition for these results stems from the effect of scalability on a firm’s marginal cost curve.

Define marginal returns to scale (MRTS) as the negative of the elasticity of marginal cost with

respect to output:

MRTSi ≡ −
Qic

′′
i (Qi)

c′i(Qi)
,

where ci(Qi) denotes firm i’s cost function. A higher MRTS means that marginal cost rises more

slowly with output. Note that MRTS is distinct from average returns to scale (ARTS), which

measures how a firm’s average cost changes with output.17 To see the distinction, consider, e.g. a

production function with a fixed cost and a constant unit cost, as in, e.g., Dixit-Stiglitz, Krugman,

or Romer. Marginal cost is invariant to size (so MRTS = 0), but average cost declines with size.

MRTS (along with the curvature of demand) is the key determinant of responses to change in

demand. To see this, consider a firm that faces iso-elastic demand, Qi = DiP
−θ
i , where Di is a

demand shifter. The firm chooses output Qi to maximize profit, D
1
θ
i Q

θ−1
θ

i − ci(Qi). The optimality

condition is θ−1
θ
D

1
θ
i Q
− 1
θ

i = c′i(Qi). The change in output in response to a change in the demand

shifter is thus

d lnQi

d lnDi

=
1

1 + θ
Qic′′i (Qi)

c′i(Qi)

=
1

1− θ ·MRTSi
.

17ARTS is also equal to one minues the ratio of marginal cost to average cost. When ARTS is higher (lower) than
0, the firm is said to exhibit increasing (decreasing) returns to scale.
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It follows that the response of total revenue to a change in Di is given by

d lnD
1
θ
i Q

θ−1
θ

i

d lnDi

=
1

θ
+
θ − 1

θ

d lnQi

d lnDi

=
1

θ
+
θ − 1

θ

(
1

1− θ · MRTSi

)
.

Thus, the curvature of demand and MRTS are sufficient to determine responses of output and

revenue to a change in demand.18

In our multi-product setting, Qi can be mapped to the firm-level composite good. Using the

symmetry across products, the cost function of the firm solves:

ci(Qi) = min
xi,yi,Ni,Li,Qiu

NiWLi + FNi ,

subject to the capacity constraint xi + Niyi ≤ 1, technology AiZ(xi, yi)Li ≤ Qiu, and within firm

aggregation Qi ≥ N2
i Qiu. Then, MRTSi is given by (see Appendix A.3 for details):

MRTSi = −Qic
′′
i (Qi)

c′i(Qi)
=

Si
2− (1− Si)σ

=
1

2−σ
Si

+ σ
, (18)

which rises with Si. Intuitively, a higher Si implies that the firm can increase scope with a smaller

‘cost’ in terms of foregone expertise, which moderates the rise in marginal costs. This is stated

formally in the following result:

Proposition 4 Firms with higher scalable share have higher marginal returns to scale.

MRTS and Policy

Consider an economy with a single sector and a representative household that supplies labor elas-

tically and enjoys utility from the composite Q =
(∫

i
Q

θ−1
θ

i di
) θ
θ−1

according to u(Q,L), where u is

increasing in Q and decreasing in L. Apart from labor income, the household also owns all firms

and receives their profits as dividends.

In the laissez faire equilibrium, each firm charges a markup of θ
θ−1

and is therefore too small,

relative to the welfare-maximizing allocation. We define the marginal social return to subsidizing

firm i to be the increase in social welfare from a small subsidy to firm i’s revenue relative to the

fiscal cost of the subsidy (funded with a lump sum tax). The following result links the marginal

social return of subsidizing a firm to its MRTS.

Proposition 5 At the laissez-faire equilibrium, the marginal social return to subsidizing firm i is

proportional to 1
1
θ
−MRTSi

, with a constant of proportionality that is common across firms.

Together with (18), Proposition 5 shows that, with homogeneous demand elasticities, scalability

18ARTS, along with the markup, determines the revenue-to-cost ratio for the firm. See Lashkari et al. (2024).
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is a sufficient statistic for the welfare impact of small subsidies.19 Therefore, scalable firms offer

the largest bang for the buck at the laissez-faire equilibrium. The intuition is similar to what we

saw earlier: scalability increases the sensitivity of production to subsidy. This implies that, when

resources/fiscal capacity is limited (rendering the full markup-correcting subsidy infeasible), it is

optimal to direct/tilt subsidies towards scalable firms.

The Size Distribution

In this subsection, we show how scalability can aid our understanding of the enormous variation in

firm size, a classic question in economics and one that has attracted renewed interest recently. As

noted earlier, the endogenous response of scope and scalability amplifies the effects of productivity

variation on firm size, inducing a convex relationship between total revenue and productivity (both

in logs). Without these forces, our iso-elastic environment reduces to the standard Hopenhayn-

Melitz framework with a log-linear relationship between total revenue and productivity. The fol-

lowing result states this formally.

Proposition 6 Suppose σ > 1. Then, firm revenue is strictly convex in productivity (both in logs),

i.e. d2 lnR
d(lnA)2

> 0.

Under some conditions, this mechanism can even generate an unbounded size distribution – in

particular, one following a power law – from a bounded productivity distribution. This example

requires additional assumptions on the productivity distribution. We begin with the following

definition.

Definition 1 A probability distribution function H(A) has a constant right elasticity at upper bound

Ā if limA↗Ā
log[1−H(A)]

log[1−A/Ā]
= κ.

One example is the beta distribution with bounds A and Ā and parameters η and κ.20 The next

result states the conditions under which we obtain a power law distribution in size.

Proposition 7 Suppose that σ > 1 and that Ai is distributed according to a distribution with a

constant right elasticity at upper bound Ā, where Ā ≤ A∗ ≡ F
GZx(1,0)

. Then,

1. If Ā < A∗, then the distribution of revenue is bounded.

2. if Ā = A∗, then the size distribution is unbounded and follows a power law:

lim
R→∞

log Pr (Size > R)

logR
= −κ(σ − 1).

19The constant of proportionality in Proposition 5 approaches zero as labor supply becomes less elastic. In the
limit, with perfectly inelastic labor, the equilibrium is efficient.

20The beta distribution has density h(A) = Γ(η+κ)
Γ(η)Γ(κ)

(A−A)η−1(Ā−A)κ−1

(Ā−A)η+κ−1 .
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Thus, the amplification from the optimal choice of scalability and scope generates firms of

unbounded sizes despite a finite upper bound for productivity. Of course, this result is somewhat

special21, but it serves as a stark illustration of the potential of scalability to amplify productivity

variation into enormous differences in firm size.

Growth and Concentration

There has been much interest in rising concentration of late, driven by recent trends in the US data

over the past few decades. Here, we show how scalability of expertise induces a rise in concentration

in response to a common increase in demand. This occurs when the largest firms in an industry are

also the most scalable and therefore, respond most to the higher demand.

Proposition 8 Let σ > 1. For a fixed set of firms, an increase in G leads to a first order stochas-

tically dominant shift in the distribution of revenue shares.

This follows directly from Propositions 1 (larger firms have higher shares of scalable expertise) and

2 (firms with higher scalable shares see larger increases in revenue in response to common shock).

This result implies that a symmetric demand increase will raise concentration – more precisely, any

measure of concentration that depends only on the distribution of sales shares and rises with a shift

in sales from a lower-ranked firm to a higher-ranked firm. This includes several commonly used

measures like the Gini coefficient, the Herfindahl-Hirschman Index, and concentration ratios.

Corollary 1 Let σ > 1. An increase in G raises concentration of sales among a fixed set of firms.

2.3 General Model

In this subsection, we relax assumptions on curvature and heterogeneity made in the previous

subsection. The firm’s problem is now assumed to be given by:

max
xi,yi,Ni

GNφ
i (AiZ(xi, yi))

ψ − FNω
i −H · [x

µ
i +Niy

µ
i ]γ . (19)

There are several differences relative to the version analyzed in the previous subsection: (i) elas-

ticities of substitution between among products in a firm’s portfolio can be different than among

firm-level composite, i.e. φ = θ−1
ε−1
6= 1 22 (ii) a more flexible specification for the fixed operating

costs, F(Nij) (iii) expertise is now subject to an explicit cost (instead of a capacity constraint) and

21In the general model below, the power law result requires, in addition to the restriction on Ā, two assumptions
on curvature parameters, φ

ω + ψ
µγ = 1 and φ = ψ

µ . Nevertheless, the underlying force remains present and induces

larger size gaps among higher productivity firms than among lower productivity firms (for the same productivity
gap).

22In Appendix A.2, we present a version in which a firm’s productivity varies exogenously across its products.
When such variation follows a power law, consistent with the evidence in Bernard, Redding and Schott (2011), the
firm’s objective takes the same reduced form as (19).
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(iv) the function Z(x, y) is no longer restricted to be of the CES form (the only restriction is that

it is CRS). Note that this more general formulation nests the previous one with the parameters

φ = ψ = ω = 1 and γ →∞.

We begin by imposing regularity conditions. Let σ(x/y) be the elasticity of substitution between

x and y: since Z(x, y) is CRS, the elasticity is a function of the scalability ratio x/y. Define the

transformed CRS function Z̃ (x̃, ỹ) ≡ Z
(
x̃1/µ, ỹ1/µ

)µ
. Let σ̃ (x̃/ỹ) be the elasticity of substitution

associated with Z̃. Appendix A.7 shows that σ and σ̃ are related by σ̃(k)−1
σ̃(k)

= 1
µ

σ(k1/µ)−1

σ(k1/µ)
. Note that

σ̃ is between 1 and σ, and approaches 1 as µ grows large.

Assumption 2 The parameters satisfy the following conditions:

(i) 1 > φ
ω

+ ψ
µγ

.

(ii) σ̃ ≤ 1 + ω.

(iii) If σ > 1 then φ ≥ ψ/µ.

These restrictions are sufficient to guarantee a unique, interior solution to the firm’s problem

(see Appendix A.7): (i) ensures that curvature of the cost of scope and expertise is larger than that

of the corresponding benefit (ii) ensures that the scope-scalability feedback is not explosive (iii)

ensures that the feedback between reducing scope and increasing local expertise is not explosive.

As in the previous subsection, firms with higher productivity raise size, scope and scalability.

Whether the share of scalable expertise, Si ≡ xµi
xµi +Niy

µ
i
, rises with size depends on the substituability

between scalable and local expertise.

Proposition 9 Suppose Assumption 2 holds. Then

1. Firms with higher Ai have higher size, scope, and scalability ratio. They also have higher

scalable shares if σ > 1.

2. Firms respond to an increase in demand by raising size, scope, and scalability ratio: d lnRi
d lnG

> 0,
d lnNi
d lnG

> 0, and d lnx/y
d lnG

> 0. The scalable share Si also rises if σ > 1.

Thus, as in the simple version, heterogeneity in the ‘level’ of productivity endogenously generates

heterogeneity in effective curvature. Moreover, even with all these rich interactions, responsiveness

to shocks is summarized by a single variable, the scalable share of expertise.23

Proposition 10 Scalability ratio is a sufficient statistic for the elasticities of scope, size, size per

unit, scalability ratio, and the scalable share of expertise to demand.

The following assumption restricts attention to the more ‘natural’ region of the parameter space,

where the two forms of expertise are gross substitutes.

23As we will show in Section 2.4, this is robust to adding more heterogeneity (again, in levels).
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Assumption 3 We assume that 1 < σ̃ < 1+ φ

1− ψ
µγ

, and that σ is non-decreasing in scalability ratio.

Proposition 11 Suppose Assumptions 2 and 3 hold. In response to the same change in G, firms

with higher scalability ratio (or, equivalently, higher scalable share) have larger changes in size,

scope, scalability ratio, and the scalable share:

d

d(x/y)

(
d lnR

d lnG

)
> 0,

d

d(x/y)

(
d lnN

d lnG

)
> 0,

d

d(x/y)

(
d lnx/y

d lnG

)
> 0,

d

d(x/y)

(
d ln S

1−S

d lnG

)
> 0

d

dS

(
d lnR

d lnG

)
> 0,

d

dS

(
d lnN

d lnG

)
> 0,

d

dS

(
d lnx/y

d lnG

)
> 0,

d

dS

(
d ln S

1−S

d lnG

)
> 0.

In many settings, it may not be possible to directly observe a firm’s scalability ratio or scalable

share. Nevertheless, if σ > 1, then firms with higher scalability also have higher size and scope. A

simple consequence of Proposition 11 is that firms with higher size or scope will exhibit stronger

responses to the same increase in demand.

Corollary 2 Suppose Assumptions 2 and 3 hold. In response to a change in G, firms with higher

size or higher scope have larger changes in size, scope, scalability ratio, and scalable share:

d

dR

(
d lnR

d lnG

)
> 0,

d

dR

(
d lnN

d lnG

)
> 0,

d

dR

(
d lnx/y

d lnG

)
> 0,

d

dR

(
d ln S

1−S

d lnG

)
> 0

d

dN

(
d lnR

d lnG

)
> 0,

d

dN

(
d lnN

d lnG

)
> 0,

d

dN

(
d lnx/y

d lnG

)
> 0,

d

dN

(
d ln S

1−S

d lnG

)
> 0 .

2.4 Additional Heterogeneity

In this subsection, we add more dimensions of heterogeneity. The firm’s objective is now assumed

to be given by:

πi = max
N,x,y

GNφ(AiZ(x, y))ψ − FiNω −Hi

[(
x

axi

)µ
+N

(
y

ayi

)µ]γ
.

Relative to Section 2.2-2.3, now firms also vary in the operating cost, Fi and in the cost of expertise,

both through the overall cost shifter Hi, as well as in type-specific parameters axi and ayi .

This richer heterogeneity breaks the tight links between size, scope, and scalability in the cross-

section. Nevertheless, the elasticities of size, scope and scalability with respect to demand are

exactly the same as in Section 2.3. In particular, the scalable share of expertise (or equivalently,

scalability ratio) remains a sufficient statistic for these elasticities. Under Assumptions 2 and 3, in

response to the same change in demand, firms with higher share of scalable expertise (or equivalently
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more scalable firms) have larger increases in size, scope, and scalability ratio. That is, Propositions

10 and 11 continue to hold.

We next turn to the implications for concentration of rising industry demand. Recall that,

with only 1 dimension of heterogeneity, a common rise in demand increased the market share of

the largest firms (when σ > 1). Now, with additional dimensions of heterogeneity, scalability is

not necessarily tightly linked to size, but is still the key determinant of responsiveness to demand.

Therefore, the effect of rising industry demand on concentration depends on how scalability covaries

with size: loosely speaking, the more positive this covariance, the larger is the rise in concentration

to a positive demand shock.

Formally, we first define a partial ordering of the scalability-size covariance: scalability is said

to covary more strongly with size in industry 1 compared to industry 2 if the marginal distributions

of size and of scalability are the same, and if for any level of size, R, the distribution of scalability

among firms in industry 2 with size weakly less than R first order stochastically dominates the

corresponding distribution in industry 1. The ordering is strict if the stochastic dominance is strict

for some R. Intuitively, this ordering captures the effect of moving scalability from smaller to larger

firms holding the marginal distributions fixed. Our notion of a rise in concentration is the same as

in Proposition 8: an increase in any metric that depends only on the distribution of sales shares

and rises with a shift in sales from a lower-ranked firm to a higher-ranked firm.

Proposition 12 An increase in G raises concentration of size (among a fixed set of firms) by more

in the industry in which the scalable share of expertise covaries more strongly with size.

3 Data

We now test the key predictions of the model using detailed product- and establishment-level

data. Our primary application focuses on multi-product firms: we propose a firm-level measure of

scalability, guided by Section 2.1. For the analysis on multi-establishment firms, we do not have an

analogous measure of scalabaility, so we test the model’s predictions leveraging the size-scalability

correlation implied by the theory.

This section describes the data sources and the construction of demand shocks. In the next

section, we describe the construction of the scalability measure and present the empirical validation

of the model’s predictions.

3.1 Multi-Product Firms

We use comprehensive data on firms and products in the consumer packaged goods (CPG) industry

from 2006 to 2015, collected by the NielsenIQ Retail Scanner Data (RMS) and provided by the

Kilts Data Center at the University of Chicago Booth School of Business. The dataset is based

on point-of-sale records from grocery, drug, and general-merchandise stores. The CPG industry
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accounts for approximately 14% of total goods consumption in the U.S. The NielsenIQ RMS data

covers about 40% of industry sales and includes nearly the full universe of firms and products in

the sector.

The RMS dataset contains over one million distinct products identified by barcodes, enabling

us to track sales over time at a highly granular level. Barcodes are organized hierarchically. Each

barcode is assigned to one of 1,070 product modules (e.g., lamps, flashlights, Christmas lights,

razor blades, shave cream, shaving accessories), which in turn belong to one of 104 broader product

groups (e.g., light bulbs, shaving needs). Following Hottman, Redding and Weinstein (2016) and

Argente, Lee and Moreira (2020), we define sectors as product groups, a more granular level than

the 4-digit Standard Industrial Classification (SIC).

We link products to firms using information from GS1 US, the official source of barcode assign-

ments.24 For each firm-sector-year observation, we compute total sales (size) and the number of

distinct products (scope). Because each barcode corresponds to a unique combination of product

attributes, barcode counts provide a close mapping to scope in the model. Finally, the dataset also

provides rich information on each firm’s product portfolio, including detailed attributes (e.g., size,

packaging, formula, flavor) and observable characteristics (e.g., variants such as blue or red), which

we use to measure standardization.

3.2 Sectoral Demand Shocks

Our theory makes predictions about how firms respond to common shocks. To test these predictions,

we use a widely used sectoral demand shock: Chinese import competition. Specifically, we use

changes in the import penetration ratio to construct sector-level trade exposures, closely following

Autor, Dorn and Hanson (2013) and Acemoglu, Autor, Dorn, Hanson and Price (2016). Data on

trade between China and the U.S. is from UN Comtrade, NBER-CES, and UNIDO. Our baseline

measure of trade exposure for sector j is defined as

∆IPj,06−15 =
Mj,15 −Mj,06

Yj,06 +Mj,06 − Ej,06

× 100 (20)

where Mj,t denotes imports from China into the US in year t, Ej,t denotes exports, and Yj,t denotes

industry shipments. We use 2006 as the baseline year because it is the earliest period for which we

have simultaneous trade, product, and establishment data. Intuitively, ∆IPj,06−15 captures sector-

level increases in import competition from China. To address endogeneity concerns, we also use an

instrumental variable based on Chinese imports in other high-income countries. The instrument

exploits the fact that high-income economies are similarly exposed to Chinese supply shocks but

are unaffected by U.S.-specific demand shocks.25

24Appendix B provides detailed information on the NielsenIQ RMS and GS1 US datasets.
25See Appendix B.3 for more details on the construction of the instrument.

22



We interpret rising import penetration as a decline in the residual demand faced by U.S. produc-

ers. Accordingly, we define a sector’s demand shock as the additive inverse of import penetration:

∆Gj = −∆IPj,06−15. For the product-level data, we use the concordance developed by Bai and

Stumpner (2019) to map NielsenIQ product groups to trade data and construct shocks at the prod-

uct group level. For the establishment data, we use a standard mapping from SIC codes to trade

sectors to assign shocks at the 4-digit SIC level.26

4 Mapping Theory to Data

In this section, we describe our measure of scalability and use it to test the following key predictions

of the theory: (i) in the cross-section, firms with greater size or scope exhibit higher scalability

(Proposition 1). (ii) in response to increase in sectoral demand, firms with higher scalability expand

size, scope, and scalability by more (Proposition 11); (iii) market concentration should rise more

in sectors where scalability covaries more strongly with firm size (Proposition 12); and (iv) firms

with greater size or scope should exhibit larger adjustments along both the size and scope margins

(Corollary 2). We group these predictions into two sets. The first three leverage our scalability

measure and are tested using multi-product firm data. The fourth prediction relies only on firm

size and scope and is tested using both multi-product and multi-establishment data.

4.1 Measuring Scalability

Our measure of scalability captures the extent to which characteristics are shared across products.

Specifically, we construct the scalability index, SI, as introduced in Section 2.1, using detailed

information on product attributes. In the NielsenIQ data, each product is associated with a number

of attributes, such as package, size, flavor, formula.27 These attributes can take different values,

which we term “characteristics”. For example, the product module razor blades has 5 attributes:

form, consumer type, scent, skin condition, and generic. The attribute “form” can take the following

characteristics: “adjustable”, “assorted”, “injector”, “moving”, “pivoting”, etc.

The scalability index for firm i in module m in sector j at time t is defined as the fraction of

common attributes across its product portfolio:

SI imjt ≡ 1−
Uniqueimjt

Scopeimjt × NumAttributesmjt
,

where Uniqueimjt denotes the number of distinct characteristics in the product portfolio of firm i

26Figure B.3 shows the variation in Chinese import penetration across sectors. There is substantial heterogeneity
both within the consumer product industry and across manufacturing more broadly. As expected, sectors producing
semi-durable and durable goods were more affected by Chinese import competition and therefore experienced more
negative demand shocks than sectors focused on food products.

27This information is available for approximately 61% of all barcodes in the data. We use a total of 20 distinct
attributes, with each product module containing between 4 and 8 active attributes.
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in module m, sector j at time t. This is divided by the total number of attribute cells to be filled:

module-level scope Scopeimjt (the number of products) times the number of attributes per product

in that module, NumAttributesmjt. Thus, SI imjt captures the share of common characteristics

across a firm’s product portfolio. If no characteristic is shared across products, the scalability index

equals zero. For example, a single-product firm will have as many characteristics as attributes,

resulting in a scalability index of zero. In contrast, when characteristics are almost always shared,

the index approaches one.

We aggregate this object (using revenue weights) to obtain the scalability index at the firm-

sector-year level, SI ijt. The following transformation maps SI to the scalability ratio:

ln

(
xijt
yijt

)
∝ ln

(
SI ijt

1− SI ijt

)
. (21)

One potential concern is that coarseness in NielsenIQ’s tabulation of product characteristics

could lead to a mechanical bias in our measurement of scalability ratios.28 To partly address this,

we adjust the observed index with a bootstrap procedure: for each firm-module-sector-year, we

compute a counterfactual scalability index by assigning Nimjt randomly selected products from

that module to the firm. This is aggregated to the firm level and then transformed as in (21)

obtain a counterfactual scalability ratio for a given firm-sector-year. Our adjusted scalability mea-

sure is obtained by subtracting this counterfactual (log) scalability ratio from the observed one.

The adjusted measure can be interpreted as capturing excess scalability with respect to a random

portfolio of products of the same size. Additional details on the construction, including examples

and robustness checks, are provided in Appendix C.

4.2 Scalability in the Cross-section

We begin by testing the model’s predictions about the cross-sectional pattern of scalability: in

particular, as Proposition 1 predicts, we assess whether the scalability ratio is positively related to

size and scope.

ln

(
xijt
yijt

)
= αR + βR sizeijt + λRi + ΓRjt + εRijt

ln

(
xijt
yijt

)
= αN + βN scopeijt + λNi + ΓNjt + εNijt (22)

28There are two potential issues. First, within an attribute, the set of characteristics may be partitioned into
coarse groupings, so that products with characteristics that are different may be reported as sharing the same
characteristic. For example, the attribute ‘style’ for flashlights is only described as “waterproof,” “with batteries,” or
“without batteries.” In this case, our raw scalability measure could overstate the degree of standardization. Second,
fully describing a product may require describing a very large set of attributes, while the data contains information
about a more limited subset. The severity of these issues is likely to be heterogeneous across modules and attributes.
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where
xijt
yijt

is the scalability ratio as defined in the previous subsection, and sizeij and scopeij are the

log of total revenue and scope, respectively, and {λRi , λNi } and {ΓRjt,ΓNjt} are firm- and sector-by-year

fixed effects respectively.29

The results, in Table 1, show that βR > 0 and βN > 0, consistent with the model’s prediction

that firms with larger size or scope have more scalable knowledge. Columns (2) and (4) show that

these results are robust to controlling for firm fixed effects.30

Table 1: Cross-Sectional Relationship: Scalability, Scope and Size

(1) (2) (3) (4)
ln x

y
ln x

y
ln x

y
ln x

y

size 0.145*** 0.172***
(0.021) (0.013)

scope 0.258*** 0.240***
(0.027) (0.018)

Observations 235,674 233,004 235,671 233,001
R-squared 0.021 0.405 0.054 0.417
Firm N Y N Y
Period-Sector Y Y Y Y

The table reports the results from estimating (22). The dependent variable is the log of scalability, as defined
in equation (22), and the independent variables are the logs of firm size (revenue) and scope. All variables are
standardized relative to the mean of their sector and time period (year). Standard errors are robust. Scalability is
adjusted relative to its bootstrapped counterpart.

4.3 Scalability and Response to Shocks

Next, we examine how scalability mediates a firm’s response to a common sectoral shock. Proposi-

tion 11 predicts that, when the two forms of expertise are relatively substitutable, firms with higher

scalability experience larger changes in size, scope, and scalability in response to the same shock.

We test this prediction using the following specifications:

∆ sizeij = αRS ∆Gj + βRS

(
∆Gj × ln

xij
yij

)
+ γRSXij + ψRSj + εRSij

∆ scopeij = αNS ∆Gj + βNS

(
∆Gj × ln

xij
yij

)
+ γNSXij + ψNSj + εNSij

∆ ln

(
xij
yij

)
= αSS ∆Gj + βSS

(
∆Gj × ln

xij
yij

)
+ γSSXij + ψSSj + εSSij (23)

29With a slight abuse of notation, when we write ln (xijt/yijt), we are referring to the log of the ratio between the
observed scalability ratio and its bootstrapped counterpart.

30Table D1 in the Appendix shows that these results are robust across different categories in the NielsenIQ data
and to disaggregating sectors further.
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where dependent variables are the log changes in total revenue, number of products, and scalability

ratio, respectively, between 2006 and 2015. The variable Gj is the China import penetration shock

for sector j.31 We control for sector fixed effects to account for heterogeneity in sector-specific

responses and include firm-level controls Xij: log scalability, log size, log size squared, log scope,

and log scope squared. All controls are measured prior to the shock to address potential systematic

associations between size and growth, as well as mean reversion effects. The coefficients of interest

are βRS, βNS, and βSS, which capture how firms with different levels of scalability respond to the

same shock. The theory predicts all three should be positive.

Columns (1)-(3) in Table 2 show that firms with higher scalability ratio change their size, scope

and scalability more in response to the shock. There are two ways to interpret this result. On

the one hand, if one takes as given that scalable and local knowledge are substitutes (as we argue

is natural in this setting), then this is a test of Proposition 11. Alternatively, one could accept

the model but be agnostic about σ, and view Columns (1)-(3) as evidence that scalable and local

expertise are substitutes.32

One might worry that scalability may simply be standing in for size (or scope), which may be

associated with a firm’s responsiveness to shocks for reasons outside the model. This assertion is

difficult to assess, as (i) our theory predicts that the same differences in fundamentals drive changes

in scalability, scope, and size jointly, and (ii) scope and size are arguably measured more precisely

than scalability. Together, these imply that a regression that gauges responsiveness using scalability

as well as size or scope would likely load the explanatory power on size or scope. Remarkably, when

we estimate the same specifications, controlling for the interactions of the shock with scope in

columns (4)-(6) or with size in columns and (7)-(9), the effect of scalability survives (though in

some cases, we lose statistical significance). These results show that scalability continues to be a

significant predictor of firm responsiveness, indicating that it captures an independent dimension

of firm capabilities not accounted for by size alone. Overall, the results provide strong support for

the central prediction of the theory – more scalable firms are more sensitive to demand.

4.4 Market Size and Concentration

Proposition 12 states that a given increase in G will raise the concentration of firm size more in

sectors where scalability is associated more strongly with size. To identify such sectors, we calculate,

for each sector j, the covariance between scalability and size in 2006 (Wj,2006), focusing on firms

31Note that the shock, ∆Gj , is sector-specific. Therefore, when we estimate these specifications with sector fixed
effects, the coefficient α on the shock cannot be identified.

32In other contexts, expenditure on scalable and non-scalable investments can be measured directly, so that the
relationship between size and the share of scalable investments can be used as suggestive evidence of substitutability.
Take, for example, the use of managerial input, a form of scalable (or firm-wide) expertise. Akcigit, Alp and
Peters (2021) and Chen, Habib and Zhu (2023) find that larger firms systematically hire more managers while
Grobovšek (2020) documents that the share of managerial compensation rises with size, consistent with relatively
high substitutability.
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Table 2: Response to Shocks: Scalability

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ size ∆ scope ∆ ln
(
x
y

)
∆ size ∆ scope ∆ ln

(
x
y

)
∆ size ∆ scope ∆ ln

(
x
y

)
∆G × ln

(
x
y

)
0.0262** 0.0141** 0.0119*** 0.0165 0.0090 0.0116*** 0.0162 0.0138** 0.0116***

(0.012) (0.006) (0.003) (0.013) (0.006) (0.003) (0.013) (0.006) (0.003)
∆G × scope 0.0414*** 0.0220*** 0.0014

(0.011) (0.005) (0.003)
∆G × size 0.0965*** 0.0028 0.0030

(0.016) (0.007) (0.003)

Obs. 14,186 14,186 13,467 14,186 14,186 13,467 14,186 14,186 13,467
R-squared 0.167 0.121 0.257 0.168 0.123 0.257 0.170 0.121 0.257
Sector Y Y Y Y Y Y Y Y Y

Note: The table reports the results from estimating (23) for the period 2006–2015. The dependent variable in
Columns (1), (4), and (7) is the change in the (log of) size (revenue) of firm i in sector j. In Columns (2), (5), and
(8), the change in scope, and in Columns (3), (6), and (9), the change in scalability. The key independent variable
is the China import penetration shock from 2006-2015 interacted with the firm’s baseline level of scalability, scope,
or size in 2006. Standard errors are robust. All specifications include as controls the shock, sector fixed effects and
controls for scalability, firm size, size squared, scope, and scope squared.

active throughout the 2006–2015 period.33 We then estimate the following specification:

∆Yj = α ∆Gj + β
(

∆Gj × Ŵj

)
+ γŴj + εj (24)

where ∆Yjt is the change in concentration in sector j between 2006 and 2015. As before, ∆Gj is

the sector-level Chinese import penetration shock. The coefficient of interest is β. According to

the theory, β > 0, i.e. concentration is more sensitive to demand when scalability covariance more

positively with size.

Table 3 shows the results for various measures of concentration. Column (1) uses the Herfindahl

index, column (2) the concentration ratio —the share of revenue held by the top five firms in the

sector— and column (3) the additive inverse of the number of firms accounting for 80% of market

share. For all three measures, we find that β > 0, showing that the covariance between scalability

and size is informative about how industry concentration responds to demand.

4.5 Size and Response to Shocks

Corollary 2 states that, in response to the same change in sectoral demand G, firms with greater

initial size or scope exhibit larger changes in both size and scope. This prediction can be tested

even in the absence of a direct measure of scalability. This allows us to extend our analysis beyong

33Specifically, we estimate the regression ln
(
xij
yij

)
= λj +Wj scopeij + εij for each sector, where

xijt
yijt

is scalability

and scopeij is log of number of products of firm i in sector j in 2006. The estimated coefficient on size is positive in
over 80% of sectors.
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Table 3: Market Size and Concentration

(1) (2) (3)
∆ HHI ∆ Share -∆ ln # firms

Top 5 80% share

∆G ×Ŵ2006 0.0073*** 0.0088*** 0.0422***
(0.002) (0.002) (0.008)

Observations 112 112 110
R-squared 0.065 0.080 0.099

Note: The table reports the results of estimating (24). The dependent variable in Columns (1) is the change in the
Herfindahl index in sector j from 2006-2015. In Column (2), the change in the market share held by the top five
firms in the sector and in Column (3), the log change in the number of firms accounting for 80% of total market
share, multiplied by minus one. The variable Ŵj,2006 is the covariance between scalability and size in 2006, estimated
separately for each sector using a reduced-form approach and considering only firms with positive sales in both 2006
and 2015. Standard errors are robust. All columns use the China import penetration shock. The data are drawn
from the NielsenIQ dataset.

the multi-product setting: in particular, we can perform this test with establishment-level data on

revenues and employment.

Our data source is the National Establishment Time Series (NETS) from Dun & Bradstreet,

which covers almost the entire universe of firms and sectors in the US.34 It provides annual in-

formation on employment and sales for “lines of business” at specific locations, which we refer to

as establishments. Each establishment is assigned a Data Universal Numbering System identifier,

allowing us to track its employment and sales over time. For each establishment, we observe its

location, industry classification, and parent company; we use the parent company identifier to define

firms. For our baseline analysis, we classify establishments at the 4-digit SIC level.35 We construct

measures of firm size (total employment) and scope (number of establishments), using employment

as the preferred size metric due to its higher accuracy in NETS.36

We run the following specification on both the multi-product and multi-establishment data:

∆sizeij = αRR ∆Gj + βRR (∆Gj × sizeij) + γRRXij + ψRRj + εRRij

∆scopeij = αNR ∆Gj + βNR (∆Gj × sizeij) + γNRXij + ψNRj + εNRij

∆sizeij = αRN ∆Gj + βRN (∆Gj × scopeij) + γRNXij + ψRNj + εRNij

∆scopeij = αNN ∆Gj + βNN (∆Gj × scopeij) + γNNXij + ψNNj + εNNij. (25)

34The data is provided by Walls & Associates. Appendix B provides detailed information.
35We apply sample restrictions and robustness exercises – following Crane and Decker (2019), who compare NETS

to administrative data sources – to ensure that our results are representative.
36Appendix D.2 shows that results are similar when using revenue. The number of establishments aligns with

measures of firm expansion along intensive and extensive margins, as in Cao, Hyatt, Mukoyama and Sager (2020).
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where ∆sizeij and ∆scopeij represent the log changes in firm size and scope, respectively, between

2006 and 2015. As before, the demand shock, ∆Gj, is the sector-level change in Chinese import

penetration. The controls Xij include pre-shock values: log size, log size squared, log scope, and log

scope squared. We also include sector fixed effects. To facilitate interpretation and comparability,

we standardize the size and scope variables within each sector. The coefficients of interest – βRR,

βNR, βRN , and βNN – capture whether larger firms (in terms of size or scope) exhibit systematically

stronger responses to shocks. The model predicts that all four should be positive.

Table 4 presents our baseline estimates. Columns (1)–(4) use multi-product data from NielsenIQ,

while Columns (5)–(8) use multi-establishment data from NETS. Each column reports the coefficient

on the interaction between the shock and either firm size or scope. It shows significant positive

estimates across all cases, i.e. firms with greater initial size (or scope) exhibit larger changes in

both size and scope in response to a common demand shock.37

The magnitudes are economically meaningful: in response to 1 standard deviation decline in

Chinese import penetration, a firm that is 1 standard deviation larger than the sector average

increases size by 4.4 percentage points and scope by 2.4 percentage points more than the sector

average. Notably, in the NETS data, the estimated response of size is almost twice as large as that

for scope, implying that larger firms not only expand more overall but also on a per-unit basis.

Appendix D contains a number of robustness checks. The first examines sensitivity to the

definition of growth and the sample of firms used. Our baseline specification measures log changes

in size and scope among surviving firms, capturing the intensive margin but abstracting from

differences in entry and exit dynamics. To address this, we re-estimate our regressions using the

bounded growth rates of Davis and Haltiwanger (1992), which incorporate firm exit. As shown

in Tables D3 and D5, our main findings remain qualitatively unchanged. We also explore non-

parametric versions of equation 25, estimating the effect of shocks across different quantiles of the

size and scope distribution. Figure D1 shows that responses to the China shock are increasing in

firm size and scope. For example, the largest firms (top 1%) exhibit significantly stronger responses

than firms below the median, consistent with the monotonic patterns reported in Table 4.

5 Dynamic Patterns

In this section, we present additional empirical results that link scalability to firm dynamics and

aggregate growth. These go beyond the implications for the simple theory presented in this pa-

per, but serve to highlight the broader relevance of standardization. Specifically, we show that

37Heterogeneous responses to demand shocks is related to, but differs from the literature studying the cyclicality
of large vs. small firms, e.g., Moscarini and Postel-Vinay (2012), Fort, Haltiwanger, Jarmin and Miranda (2013),
and Crouzet and Mehrotra (2020). These papers focus on whether employment of large firms exhibits a stronger
correlation (usually, unconditional) with aggregate economic activity at business cycle frequencies. We, on the
other hand, focus on medium- to long-run responses to identified demand shocks and show, both theoretically and
empirically, how these responses vary by scalability, scope and size.
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Table 4: Response to Shocks: Size and Scope

(1) (2) (3) (4) (5) (6) (7) (8)
∆ size ∆ scope ∆ size ∆ scope ∆ size ∆ scope ∆ size ∆ scope

∆G × size 0.017*** 0.001 0.044** 0.024***
(0.005) (0.004) (0.022) (0.009)

∆G × scope 0.014*** 0.017*** 0.117*** 0.057***
(0.005) (0.003) (0.042) (0.021)

Obs. 17,138 17,138 17,138 17,138 321,115 321,115 321,115 321,115
R-squared 0.163 0.150 0.163 0.152 0.047 0.023 0.043 0.242
Sector Y Y Y Y Y Y Y Y
Data NielsenIQ: Multi-product NETS: Multi-establishment

Note:The table reports the results of estimating (25). The dependent variable is either the log change in total
employment of firm i in sector j from 2006 to 2015, or the change in the number of products or plants. The table
reports βRR (Columns 1 and 5), βNR (Columns 2 and 6), βRN (Columns 3 and 7), and βNN (Columns 4 and 8).
Columns (1)–(4) use NielsenIQ data, while Columns (5)–(8) use NETS data. All regressions use the China import
penetration shock from 2006 to 2015. Specifications include robust standard errors, sector fixed effects, and firm-level
controls: scalability, log size, log size squared, log scope, and log scope squared.

standardization is associated with innovation “bursts” and innovations that diffuse more widely.

5.1 Scalability and Innovation Bursts

Berlingieri, De Ridder, Lashkari and Rigo (2024) have shown the importance of innovation bursts –

the rapid addition of new products to a firm’s portfolio – for understanding variation in firm-level

growth, industry concentration and growth. We show that when a firm introduces a set of new

products, if the newly introduced products are more standardized then they are more likely to

comprise an innovation burst. Panel (a) of Figure 3 plots the relationship between the scalability

of newly introduced products (adjusted using the bootstrap procedure referred to earlier) and the

number of new products launched, controlling for sector-period fixed effects. It shows a strong

positive relationship. Panel (b) shows a similar positive association of scalability with the total

revenue generated by the new products. Together, the panels suggest that standardization plays an

important role in episodes of extreme firm growth.
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Figure 3: Standardization and Innovation
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Note: Panel (a) shows a binscatter plot of the relationship between the number of new products and the scalability
of those products (i.e., x

y ) (in logs). Panel (b) shows a binscatter plot of the relationship between the revenue from

new products (in logs) and their scalability (in logs). The scalability index is adjusted relative to the alternative
bootstrapped index. Both figures control for period-sector fixed effects.

5.2 Scalability and Knowledge Diffusion

Finally, we show that scalability has implications for diffusion of knowledge in the economy. The

underlying hypothesis is that scalability — applicability of knowledge within a firm — also makes

such knowledge more useful to other firms in the industry. This captures the intuitive notion that the

process of standardization involves practices which likely also facilitate the transfer of knowledge

beyond firm boundaries. An alternative, complementary, mechanism is that scalable expertise

reflects innovations that are inherently more attractive or relevant for other firms to adopt.

To test this hypothesis, we construct a novel measure of diffusion based on attribute-level product

data from NielsenIQ. Specifically, we track how widely a new product characteristic spreads across

firms after it is first introduced. For each characteristic c introduced by firm i in product module

m at time t, we count the number of products introduced by other firms that adopt the same

characteristic within a future time window [t, τ ]. This provides a ex-post measure of how broadly

a given feature diffuses within the market after its introduction. Formally, for each characteristic c

introduced by firm i, we define:

Dcmitτ =
Num. of products with c introduced by firm −i between t and t+ τ

Num. of products introduced by firm −i between t and t+ τ
.

The numerator counts the number of times characteristic c, first introduced by firm i in module

m, appears in products launched by other firms over a horizon τ and the denominator, the total

number of products introduced by those other firms in the same time window. By construction,

Dc,m,i,t,τ ranges from 0 to 1.

We now examine how the diffusion of a new characteristic is related to the scalability of the firm

that introduced it. Given our interest in characteristic-level outcomes (rather than firm-level), we
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run the following regression at that more granular level:

Dcimtτ = α + β SIaimt−1 + γ scopeimt + λamtτ + θaim + εcimtτ (26)

where c, a, i, m and t index the characteristic, attribute, firm, product module, and time period,

respectively. The coefficient of interest in β, the coefficient on SIaimt−1, the Scalability Index,

measured at the attribute-module-firm level in the prior period. The lagging is done to mitigate

reverse causality or simultaneity concerns. We control for firm scope and a rich set of fixed-effects

to address unobserved heterogeneity. Our most saturated specification includes both attribute ×
module × time × age fixed effects (λamtτ ) and firm × attribute × module fixed effects (θaim).

The results, shown in columns (1) and (2) of Table E1, indicate a robust and positive association

between scalability and diffusion.38

Table 5: Scalability and Knowledge Diffusion

(1) (2)
Diffusion

SI 0.0599*** 0.0097***
(0.000) (0.001)

scope -0.0292*** -0.0057***
(0.000) (0.000)

Observations 3,319,518 3,234,863
R-squared 0.808 0.914
Firm-Attribute-Module N Y
Attribute-Module-Time-Age Y Y

Note: The table shows the results of estimating (26). The dependent variable, Dcmitτ , measures the diffusion of
characteristic c in module m, introduced by firm i between periods t and t + τ . The key independent variable is
the scalability index SIaimt−1, measured for attribute a in firm i and module m in period t − 1. All specifications
control for the total number of products sold by firm i in module m at time t.

These findings have a number of implications. One, they highlight the disproportionate role of

large (more precisely, scalable) firms in driving aggregate growth. Two, changes in the environment

that cause firms to change the scalability of their investments (such as the China shock studied

in the preceding sections) have effects that go beyond the focal firms. Finally, on the normative

front, these patterns to point to an externality: to the extent that firms do not internalize the value

generated by diffusion, they will under-invest in scalability (relative to the social optimum). As a

result, subsidizing scalable expertise becomes socially desirable.39

38In Appendix E, we construct an alternative measure of a firm’s tendency to introduce scalable characteristics,
using ex-post information about the firm’s use of that characteristic in products that are introduced in the future.
The strong positive relationship between diffusion and lagged scalability remains robust when we use this alternative
measure.

39This echoes the notion that, in the presence of knowledge spillovers, there can be underinvestment in ideas, as
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6 Conclusion

The paper develops and tests a model of multi-unit firms, centered on standardization. The analysis

delivers a simple, empirically relevant, insight: when scalable and non-scalable investments are

substitutes, standardization increases a firm’s marginal returns to scale, making it more sensitive

to changes in demand.

There are many promising directions for future research. Our theoretical framework was kept

intentionally simple and abstracts from many realistic elements, such as richer heterogeneity across

products. We also abstracted from dynamics and stochastic fundamentals, both of which are no

doubt essential to paint a complete picture of firm heterogeneity and growth. Incorporating these

elements and undertaking a full-fledged quantitative analysis is a natural and ambitious next step.

Finally, integrating standardization into workhorse models of aggregate growth—particularly the

link between standardization and diffusion—promises new positive and normative implications.

emphasized recently by Crouzet et al. (2024).

33



References

Acemoglu, Daron, David Autor, David Dorn, Gordon H Hanson, and Brendan Price, “Import

competition and the great US employment sag of the 2000s,” Journal of Labor Economics, 2016,

34 (S1), S141–S198.

Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J Klenow, and Huiyu Li, “A theory of

falling growth and rising rents,” 2019.

, Nicholas Bloom, Brian Lucking, Raffaella Sadun, and John Van Reenen, “Turbulence, Firm

Decentralization, and Growth in Bad Times,” American Economic Journal: Applied Economics,

2021, 13 (1), 133–69.

Akcigit, Ufuk and William R Kerr, “Growth through heterogeneous innovations,” Journal of Polit-

ical Economy, 2018, 126 (4), 1374–1443.

, Harun Alp, and Michael Peters, “Lack of selection and limits to delegation: firm dynamics in

developing countries,” American Economic Review, 2021, 111 (1), 231–275.

Argente, David, Munseob Lee, and Sara Moreira, “The Life Cycle of Products: Evidence and

Implications,” Mimeo, 2020.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen, “The fall

of the labor share and the rise of superstar firms,” The Quarterly Journal of Economics, 2020,

135 (2), 645–709.

Autor, David H., David Dorn, and Gordon H. Hanson, “The China Syndrome: Local Labor Market

Effects of Import Competition in the United States,” American Economic Review, October 2013,

103 (6).

Bai, Liang and Sebastian Stumpner, “Estimating US consumer gains from chinese imports,” 2019.

Baldwin, John and Wulong Gu, “The impact of trade on plant scale, production-run length and

diversification,” in “producer dynamics: New Evidence from micro data,” university of Chicago

Press, 2009, pp. 557–592.

Barkai, Simcha, “Declining labor and capital shares,” The Journal of Finance, 2020, 75 (5), 2421–

2463.

Benkard, C Lanier, Ali Yurukoglu, and Anthony Lee Zhang, “Concentration in Product Markets,”

Technical Report, National Bureau of Economic Research 2021.

Berlingieri, Giuseppe, Maarten De Ridder, Danial Lashkari, and Davide Rigo, “Growth through

Innovation Bursts,” 2024.

34



Bernard, Andrew B, Stephen J Redding, and Peter K Schott, “Multiproduct firms and trade liber-

alization,” The Quarterly journal of economics, 2011, 126 (3), 1271–1318.

Bilir, L Kamran and Eduardo Morales, “Innovation in the global firm,” Journal of Political Econ-

omy, 2020, 128 (4), 1566–1625.

Bustos, Paula, “Trade liberalization, exports, and technology upgrading: Evidence on the impact

of MERCOSUR on Argentinian firms,” American Economic Review, 2011, 101 (1), 304–40.

Cao, Dan, Henry R Hyatt, Toshihiko Mukoyama, and Erick Sager, “Firm Growth through New

Establishments,” 2020.

Chan, Mons, Guangbin Hong, Joachim Hubmer, Serdar Ozkan, and Sergio Salgado, “Scalable vs.

Productive Technologies,” Technical Report 2024.

Chandeler, Alfred D., Scale and Scope: The Dynamics of Industrial Capitalism, Harvard University

Press, 1990.

Chen, Chaoran, Ashique Habib, and Xiaodong Zhu, “Finance, managerial inputs, and misalloca-

tion,” American Economic Review: Insights, 2023, 5 (3), 409–426.

Crane, Leland Dod and Ryan Decker, “Business Dynamics in the National Establishment Time

Series (NETS),” 2019.

Crouzet, Nicolas and Neil R Mehrotra, “Small and large firms over the business cycle,” American

Economic Review, 2020, 110 (11), 3549–3601.

, Janice Eberly, Andrea Eisfeldt, and Dimitris Papanikolaou, “Intangible Capital, Firm Scope,

and Growth,” Technical Report, Working Paper 2024.

Davis, Steven J and John Haltiwanger, “Gross job creation, gross job destruction, and employment

reallocation,” The Quarterly Journal of Economics, 1992, 107 (3), 819–863.

Dhingra, Swati, “Trading away wide brands for cheap brands,” American Economic Review, 2013,

103 (6), 2554–84.

Ding, Xiang, “Industry linkages from joint production,” Technical Report 2023.

Engbom, Niklas, Hannes Malmberg, Tommaso Porzio, Federico Rossi, and Todd Schoellman, “Eco-

nomic Development According to Chandler,” Technical Report, Technical report, mimeo, New

York University 2024.

Fort, Teresa C, John Haltiwanger, Ron S Jarmin, and Javier Miranda, “How firms respond to

business cycles: The role of firm age and firm size,” IMF Economic Review, 2013, 61 (3), 520–

559.

35



Garcia-Macia, Daniel, Chang-Tai Hsieh, and Peter J Klenow, “How destructive is innovation?,”

Econometrica, 2019, 87 (5), 1507–1541.

Gaulier, Guillaume and Soledad Zignago, “Baci: international trade database at the product-level

(the 1994-2007 version),” 2010.
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A Proofs and derivations

A.1 Derivation of the General Equilibrium Shifter, Gj

With wage W , firm i’s unit cost of variety u is w
AijZuij

. The firm is infinitesimal relative to the

industry, so given demand Quij =
(
Puij
Pij

)−ε (
Pij
Pj

)−θ
Qj, the optimal price is θ

θ−1
W

AijZuij
. The price

index summarizing i’s output satisfies

P 1−ε
ij =

∫ Nj

0

P 1−ε
uij du =

∫ Nj

0

(
θ

θ − 1

W

AijZuij

)1−ε

du.

Firm i’s profit is thus

Πij =

∫ Nij

0

(
Puij
Pij

)−ε(
Pij
Pj

)−θ
Qj

[
Puij −

W

AijZuij

]
du−Fj(Nij)

=

∫ Nij

0

(
Puij
Pij

)−ε(
Pij
Pj

)−θ
Qj

[
Puij −

θ − 1

θ
Puij

]
du−Fj(Nij)

=
1

θ
QjP

θ
j P

1−θ
ij −Fj(Nij)

=
1

θ
QjP

θ
j

(∫ Nj

0

(
θ

θ − 1

AijZuij
W

)ε−1

du

) θ−1
ε−1

−Fj(Nij)

We thus have Gj = 1
θ

(
θ
θ−1

)θ−1
QjP

θ
jW

1−θ.

A.2 Heterogeneous Products

In this section, we explore a version of the model in which a firm’s productivity varies exogenously

across its products. Firm i in industry j chooses a set Uij of products, and its productivity in

producing product u ∈ Uij is BuijZuij. Its profit is

πij =

∫
u∈Uij

(
Puij −

W

BuijZuij

)
Quijdu−Fj (|Uij|)

where the demand curve is Quij ≤ QjP
θ
j P

ε−θ
ij P−εuij and the price index is Pij =

(∫
u∈Uij P

1−ε
uij du

) 1
1−ε

.

The optimal price for product u is Puij = θ
θ−1

W
BuijZuij

, so the price index satisfies

Pij =
θ

θ − 1

W(∫
u∈Uij(BuijZuij)ε−1

) 1
ε−1

.
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Profit is therefore

πij =
(θ − 1)θ−1

θθ
QjP

θ
jW

1−θ

(∫
u∈Uij

(BuijZuij)
ε−1 du

) θ−1
ε−1

−Fj (Nij)

= Gj

(∫
u∈Uij

(BuijZuij)
ε−1 du

) θ−1
ε−1

−Fj (Nij)

We make two assumptions. First, expertise is the same across products, so that Zuij ≡ Zij. Second,

we assume that the distribution of productivities follows a power law. In particular, i can produce

with productivity higher than B is AτijB
−τ . Then the cutoff associated with choosing N products

is AijN
−1/τ . Profit is

πij = GjZ
θ−1
ij

(∫
u∈Uij

Bε−1
uij du

) θ−1
ε−1

−Fj (Nij)

= GjZ
θ−1
ij

(∫ ∞
AijN

−1/τ
ij

Bε−1AτijτB
−τ−1dB

) θ−1
ε−1

−Fj (Nij)

= Gj (AijZij)
θ−1

(
1

1− ε−1
τ

N
1− ε−1

τ
ij

) θ−1
ε−1

−Fj (Nij)

=
Gj(

1− ε−1
τ

) θ−1
ε−1

(AijZij)
θ−1N

(1− ε−1
τ ) θ−1

ε−1

ij −Fj (Nij)

A.3 Marginal Returns to Scale

In our multi-product setting, output refers to the composite good Qi =
(∫ Ni

0
Q

ε−1
ε

iu du
) ε
ε−1

. Noting

the symmetry across products, the cost of producing Qi is the solution to

ci(Qi) = min
xi,yi,Ni,Li,Liu,Qiu

NiWLi + FNi

subject to the capacity constraint xi + Niyi ≤ 1, technology AiZ(xi, yi)Liu ≥ Qiu, and within firm

aggregation Qi ≥ N
ε
ε−1

i Qiu and Li ≥
∫ Ni

0
Liudu. Eliminating Li, Liu, and Qiu yields

ci(Qi) = min
xi,yi,Ni

WNiQi

N
ε
ε−1

i AiZ(xi, yi)
+ FNi subject to xi +Niyi ≤ 1

Finally, eliminating yi and using ki = xi/yi gives

ci(Qi) = min
ki,Ni

WNiQi

N
ε
ε−1

i Ai
z(ki)
ki+Ni

+ FNi.
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Using the envelope theorem and ε = 2, marginal cost is c′i(Qi) = W

NiAi
z(ki)

ki+Ni

. Marginal returns to

scale can be found by differentiating once more:

MRTSi = −Qic
′′
i (Qi)

c′i(Qi)
=
d ln Niz(ki)

ki+Ni

d lnQi

=
∂ ln Niz(ki)

ki+Ni

∂ lnNi︸ ︷︷ ︸
=Si

d lnNi

d lnQi

+
∂ ln Niz(ki)

ki+Ni

∂ ln ki︸ ︷︷ ︸
=0

d ln ki
d lnQi

The envelope theorem implies that changes in ki do not directly affect the marginal cost – we only

need to consider changes in Ni. As before, let K(Ni) denote the relationship between scalability

ratio and scope from (8). The optimality condition (9) yields the optimal scope as a function of

desired output Qi and scalability ratio, denoted Ñi(Qi, ki). Differentiating gives

d lnNi

d lnQi

=
∂ ln Ñi

∂ lnQi︸ ︷︷ ︸
=1/2

+
∂ ln Ñi

∂ ln ki︸ ︷︷ ︸
=

1−Si
2

NK′(Ni)

K(Ni)︸ ︷︷ ︸
=σ

d lnNi

d lnQi

(27)

=
1

2− (1− Si)σ
(28)

Together, these imply that the elasticity of marginal cost with respect to the firm’s output is

MRTSi = −Qic
′′
i (Qi)

c′i(Qi)
=

Si
2− (1− Si)σ

(29)

A.4 Marginal Returns to Scale and Policy

Consider a household maximizes with preferences U = u (Q,L), where Q ≡
(∫

Q
θ−1
θ

i di
) θ
θ−1

that

faces the budget constraint
∫
PiQidi ≤ WL+Π−T where T is a lump sum tax to pay for subsidies.

Defining the price index Pi ≡
(∫

P 1−θ
i di

) 1
1−θ , the household’s consumption of good i satisfies

Pi = P

(
Qi

Q

)− 1
θ

and its choice of labor satisfies
P

W
= −uQ

uL
.

Market clearing for labor requires that L =
∫
ci (Qi) di.

Firm i maximizes profit subject to revenue subsidy si which is paid for with a lump sum tax.

Since firm i’s revenue is PiQi = PQ1/θQ
1−1/θ
i , its optimizes by choosing a quantity Qi to maximize

πi = max
Qi

(1 + si)PQ
1/θQ

1−1/θ
i −Wci (Qi)
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The optimal quantity satisfies the FOC

θ − 1

θ
(1 + si)

PQ1/θ

W
Q
−1/θ
i = c′i (Qi)

which also implies Pi = θ
θ−1

Wc′i(Qi)

1+si
. This along with P

W
= −uQ

uL
implies

θ − 1

θ
(1 + si)

uQQ
1/θ

−uL
Q
−1/θ
i = c′i (Qi) (30)

Equation (30) along with the market clearing condition for labor, L =
∫
ci (Qi) di, are sufficient to

characterize the allocation.

We next characterize how a subsidy to firm i affects each firm’s quantity, Qı̃

d log
uQQ

1/θ

−uL
dsi

− 1

θ

d logQı̃

dsi
=

Qı̃c
′′ (Qı̃)

c′ı̃ (Qı̃)

d logQı̃

dsi
for ı̃ 6= i

1

1 + si
+
d log

uQQ
1/θ

−uL
dsi

− 1

θ

d logQi

dsi
=

Qic
′′ (Qi)

c′i (Qi)

d logQi

dsi
for ı̃ 6= i

Evaluating this derivative at si = 0 and defining ρi to satisfy 1
ρi
≡ 1

θ
+

Qic
′′
i (Qi)

c′i(Qi)
= 1

θ
−MRTSi. These

can be expressed as

d log
uQQ

1/θ

−uL
dsi

=
1

ρı̃

d logQı̃

dsi
for ı̃ 6= i (31)

−1 +
d log

uQQ
1/θ

−uL
dsi

=
1

ρi

d logQi

dsi
for ı̃ 6= i (32)

Next, we characterize how
uQQ

1/θ

−uL
responds to a subsidy to firm i. Since Q

θ−1
θ ≡

∫
Q

θ−1
θ

i di,

d logQ =

∫
ωı̃d logQı̃dı̃

where ωi ≡
(
Qi
Q

) θ−1
θ

= PiQi
PQ

. Note also that differentiating the market clearing condition and using

each firm’s choice of price gives

d logL =

∫
Qic

′
i (Qi) d logQı̃dı̃∫
ci (Qi) dı̃

=
θ − 1

θ

PQ

WL

∫
ωid logQı̃dı̃

=
θ − 1

θ

PQ

WL
d logQ
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Together, these imply

d log
uQQ

1/θ

−uL
=

(
QuQQ
uQ

d logQ+
LuQL
uQ

d logL− QuLQ
uL

d logQ− LuLL
uL

d logL+
1

θ
d logQ

)
=

[
QuQQ
uQ

− QuLQ
uL

+
1

θ
+
θ − 1

θ

PQ

wL

(
LuQL
uQ

− LuLL
uL

)]
d logQ

Letting B ≡
[
QuQQ
uQ
− QuLQ

uL
+ 1

θ
+ θ−1

θ
PQ
WL

(
LuQL
uQ
− LuLL

uL

)]
, this last equation can be expressed as

d log
uQQ

1/θ

−uL
= Bd logQ.

Using (31) and (32), the change in Q an be expressed as

d logQ

dsi
=

∫
ωı̃
d logQi

dsi
dı̃

=

∫
ωı̃ρı̃

d log
uQQ

1/θ

−uL
dsi

dı̃+ ωiρidi

=

∫
ωı̃ρı̃B

d logQ

dsi
dı̃+ ωiρidi

=
ωiρidi

1−B
∫
ωı̃ρı̃dı̃

The change in welfare is

dU

dsi
= uQQ

d logQ

dsi
+ uLL

d logL

dsi

= uQQ
d logQ

dsi
+ uLL

θ − 1

θ

PQ

WL

d logQ

dsi

Using W
P

= − uL
uQ

, this can be simplified to

dU

dsi
=

1

θ
uQQ

d logQ

dsi

=
1
θ
uQQ

1−B
∫
ωı̃ρı̃dı̃

ωiρidi

The lump sum tax to pay for the subsidy (in units of final output) is T
P

=
∫
sı̃Pı̃Qı̃dı̃

P
=
∫
sı̃Q

1
θQ

1− 1
θ

ı̃ dı̃.

At the Laissez Faire equilibrium, the marginal change in tax revenue from a small subsidy to i is

d (T/P )

dsi
= Q

1
θQ

1− 1
θ

i di = Qωidi

As a result, the marginal change in welfare relative to the marginal cost of the subsidy is
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dU
dsi

d(T/P )
dsi

=

1
θ
u′(Q)Q

1−B
∫
ωı̃ρı̃dı̃

ωiρidi

Qωidi
=

1
θ
u′ (Q)

1−B
∫
ωı̃ρı̃dı̃

ρi

A.5 Power Law Example

Lemma 1 limk→∞
log

(
z(k)
k
− z′(k)2
Zx(1,0)

)
log( z(k)k −z′(k))

= 1

Proof. As an intermediate step, we first show that limk→∞

d
dk

(
z
k
− z
′2
Zx

)
d
dk(

z
k
−z′)

exists and has a finite, strictly

positive magnitude. To do this, note first that the homogeneity of Z implies that limk→∞ z
′(k) =

limk→∞ Zx(k, 1) = limk→∞ Zx
(
1, 1

k

)
= Zx(1, 0). Second, z′′ = − z′(z−kz′)

kz
1
σ
. With these we can derive

expressions for the numerator and denominator

d
(
z
k
− z′2

Zx

)
dk

=
z′

k
− z

k2
− 2z′

Zx
z′′ =

z′

k
− z

k2
+

2z′

Zx

(
z′(z − kz′)

kz

1

σ

)
=

{
z′

Zx

2

σ

kz′

z
− 1

}
z − z′k
k2

and

d

dk

(z
k
− z′

)
=
z′

k
− z

k2
− z′′ = z′

k
− z

k2
+
z′(z − kz′)

kz

1

σ
=

{
1

σ

kz′

z
− 1

}
z − z′k
k2

Together, these imply that

lim
k→∞

d
dk

(
z
k
− z′2

Zx

)
d
dk

(
z
k
− z′

) = lim
k→∞

z′

Zx
2

σ(k)
kz′

z
− 1

1
σ(s)

kz′

z
− 1

=
2
σ̄
− 1

1
σ̄
− 1

=
2− σ̄
1− σ̄

where σ̄ = limk→∞ σ(k). Since that limit exists, we can now use L’Hopital’s rule twice to get

lim
k→∞

log
(
z
k
− z′2

Zx

)
log
(
z
k
− z′

) = lim
k→∞

z
k
− z′

z
k
− z′2

Zx

d
ds

(
z
k
− z′2

Zx

)
d
dk

(
z
k
− z′

)
= lim

k→∞

z
k
− z′

z
k
− z′2

Zx

lim
s→∞

d
dk

(
z
k
− z′2

Zx

)
d
dk

(
z
k
− z′

)
= lim

k→∞

d
dk

(
z
k
− z′

)
d
dk

(
z
k
− z′2

Zx

) lim
k→∞

d
dk

(
z
k
− z′2

Zx

)
d
dk

(
z
k
− z′

)
=1

Proposition 13 Let the support of A is distributed according to the distribution function H(A)

with support (A, Ā). Suppose further that limA↗Ā
log[1−H(A)]

log[1−A/Ā]
= κ. If Ā = A∗ ≡ F

GZx(1,0)
, then the

6



distribution of revenue follows a power law:

lim
R→∞

log Pr (Revenue > R)

logR
= −κ(σ̄ − 1)

where σ̄ = limk→∞ σ(k). If Ā < A∗, then the distribution of revenue is bounded. If Ā > A∗, then

there is a strictly positive fraction of firms that can earn infinite profit.

Proof. Consider the problem

max
k,N

GAN
z(k)

k +N
− FN

The first order conditions imply that scalability solves

GA

F

kz′(k)2

z(k)
= 1

and revenue is

Revenue = GA (z(k)− kz′(k))

The optimal choice of scalability defines a strictly increasing function Â(k) and its inverse, k̂(A)

that satisfy GÂ(s)
F

kz′(k)2

z(k)
= 1 and GA

F

k̂(A)z′(k̂(A))
2

z(k̂(A))
= 1 respectively. Using k̂, we can express revenue

as a function of A:

Revenue = E(A) ≡ GA
(
z
(
k̂(A)

)
− k̂(A)z′

(
k̂(A)

))
If Ā < A∗, then scalability for the largest firm will satisfy A∗

Ā
= kz′(k)2

Zx(1,0)z(k)
. Since kz′(k)2

z(k)Zx(1,0)
is

decreasing in k and limk→∞
kz′(k)2

z(k)Zx(1,0)
= 1, the optimal choice of scalability, k̂(Ā), will be finite.

Thus the largest firm’s revenue would be finite, and the distribution of revenue would be bounded.

If Ā > A∗, revenue for all firms with A ∈ (A∗, Ā) can attain infinite profit and infinite revenue by

setting y = 0 and letting N →∞.

We now turn to the case of Ā = A∗ ≡ F
GZx(1,0)

. We are interested in how the right tail of the

distribution of revenue varies. This is:

lim
R→∞

log Pr (Revenue > R)

logR
= lim

R→∞

log Pr (E(A) > R)

logR
= lim

R→∞

log Pr (A > E−1(R))

logR

We assumed a condition on distribution of productivity as it approaches the upper bound Ā, and

we can use that to get

7



lim
R→∞

log Pr (Revenue > R)

logR
= lim

R→∞

log Pr (A > E−1(R))

log (1− E−1(R)/A∗)
lim
R→∞

log (1− E−1(R)/A∗)

logR

=κ lim
R→∞

log (1− E−1(R)/A∗)

logR

Since E
(
Â(s)

)
approaches infinity as scalability k approaches infinity, we can express this as

lim
R→∞

log Pr (Revenue > R)

logR
=κ lim

E(Â(k))→∞

log
(

1− E−1
(
E
(
Â(s)

))
/A∗
)

logE
(
Â(k)

)
=κ lim

s→∞

log
(

1− E−1
(
E
(
Â(k)

))
/A∗
)

logE
(
Â(k)

)
=κ lim

s→∞

log
{

1−
[

z(k)
kz′(k)2

F
G

]
/A∗
}

log
{

z(k)
kz′(k)2

F [z(k)− kz′(k)]
}

Using A∗ ≡ F
GZx(1,0)

and rearranging gives

lim
R→∞

log Pr (Revenue > R)

logR
= κ lim

s→∞

log
{

1− z(k)
kz′(k)2

Zx(1, 0)
}

log
{
F z(k)
kz′(k)

z(k)−kz′(k)
z′(k)

}
We can rearrange the limit into four terms. as follows

lim
R→∞

log Pr (Revenue > R)

logR
=κ lim

k→∞

log( zk−z′)
− log k

log

{
z′(k)2
Zx(1,0)

− z(k)
k

}
log( zk−z′)

−
log

Zx(1,0)

z′(k)2

log k

log
{
F

z(k)

kz′(k)
z(k)−kz′(k)

z′(k)

}
− log k

=κ
B1B2 −B3

B4

Lemma 1 shows that B2 ≡ lims→∞
log

{
z′(k)2
Zx(1,0)

− z(k)
k

}
log( zk−z′)

= 1. Since limk→∞ z
′(k) = Zx(1, 0) ∈ (0,∞),

B3 ≡ limk→∞
log

Zx(1,0)

z′(k)2

log k
= 0. Finally, noting that L’Hopital’s rule and the definition of σ give
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limk→∞
log

z(k)−kz′(k)
z′(k)

log k
= limk→∞ σ(k) = σ̄, the limits of B1 and B4 are, respectively,

B1 ≡ lim
k→∞

log
(
z
k
− z′

)
− log k

= lim
k→∞

log
(
z−z′k
z′

)
− log k + log z′

− log k
= − 1

σ̄
+ 1 + 0 =

σ̄ − 1

σ̄

B4 ≡ lim
k→∞

log
{
F z(k)
kz′(k)

z(k)−kz′(k)
z′(k)

}
− log s

= lim
k→∞

log
{
F z(k)
kz′(k)

}
− log k

+
log z(k)−kz′(k)

z′(k)

− log k
= 0− 1

σ̄
= − 1

σ̄

Together, these imply that

lim
R→∞

log Pr (Revenue > R)

logR
= −κ (σ̄ − 1)

A.6 Intermediate Model

In this section, we study an intermediate version of the model. We later will show that the general

model in the next section can be mapped exactly into this intermediate model.

Consider the problem of a firm with a fixed capacity of attention

πi = max
xi,yi,Ni

GNφ
i (AiZ(xi, yi))

ψ − FNω
i subject to xi +Niyi ≤ 1

As in the simple model, we can express the firm’s problem in terms of scalability and scope. Let

ki ≡ xi
yi

and z(k) ≡ Z(k, 1). Let σ(k) ≡ − z′(z−kz′)
kzz′′

be the elasticity of substitution between scalable

and local knowledge, and let Si ≡ xi
xi+Niyi

be the share of knowledge devoted to scalable expertise.

The firm’s problem can be expressed as

πi = max
ki,yi,Ni

GNφ
i (Aiz(ki)yi)

ψ − FNω
i subject to yi ≤

1

ki +Ni

Substituting in the constraint by eliminating yi gives

πi = max
ki,Ni

GAψi N
φ
i

(
z(ki)

ki +Ni

)ψ
− FNω

i (33)

Abusing notation, we can express the firm’s profit as

πi = max
N

π(N ;GAψi )

where

π(N ;GAψi ) ≡ max
k
GAψi N

φ

(
z(k)

k +N

)ψ
− FNω.

Given N , this is a strictly concave problem with an interior solution, so the first order condition

9



z′(k)
z(k)

= 1
k+N

is necessary and sufficient to characterize the choice of k. This first order condition

defines a function K(N). Note that NK′(N)
K(N)

= σ (K(N)).40 We can thus express the firm’s decision

as

πi = max
N

π(N ;GAψi ) = max
N

GAψi N
φ

(
z(K(N))

K(N) +N

)ψ
− FNω

This is a unidimensional problem and we are interested in finding conditions under which there is

a unique solution that is interior. To do this, we examine the first order condition

φGAψi N
φ−1

(
z(K(N))

K(N) +N

)ψ
− ψ 1

K(N) +N
GAψi N

φ

(
z(K(N))

K(N) +N

)ψ
− ωFNω−1 = 0

Define the function

H(N) =
GAψi
Fω

Nφ−ω
(
z (K(N))

K(N) +N

)ψ (
φ− ψ N

K(N) +N

)
The first results about the existence and uniqueness of a solution concern finding conditions under

which limN→0 H(N) > 1, limN→∞H(N) < 1, and such that H(N) is strictly decreasing for any N∗

such that H(N∗) = 1.

To find how a change in demand affects firm choices, we can differentiate the first order condition

H(N) = 1 with respect to G. This gives the following claim

Proposition 14 Suppose that there is a unique optimum that is interior. Then

d lnNi

d lnG
=

1

ω − φ+ ψ(1− Si) + ψ(1−Si)
φ−ψ(1−Si)Si(1− σi)

(34)

where Si = xi
xi+Niyi

= ki
ki+Ni

is firm i’s scalable share of knowledge and σi is the local elasticity of

substitution.

Proof. Let N
(
GAψi , k

)
be the optimal choice of scope given productivity, demand, and the choice

of scalability, which satisfies the first order conditionφ− ψ N
(
GAψi , k

)
k + N

(
GAψi , k

)
GAψi N

(
GAψi , k

)φ z(k)

k + N
(
GAψi , k

)
ψ

= ωFN
(
GAψi , k

)ω
The optimal choice of N satisfies the fixed point problem of

Ni = N
(
GAψi ,K(Ni)

)
40Differentiating z′(k)

z(k) = 1
k+N gives d ln k

d lnN

[
kz′′

z′ −
kz′

z

]
= − k

k+N
d ln k
d lnN −

N
k+N . Using k

k+N = kz′(k)
z(k) , this can be

rearranged as d ln k
d lnN = −

[
z′

kz′′

]
z−kz′
z = σ.

10



How does the choice of scope change with demand? Taking logs, differentiating, and rearranging

gives (and using the notation NG and Nk to denote partial derivatives with respect to the first and

second arguments, respectively):

d lnNi

d lnG
=
GNG

N
+

K(Ni)Nk

N
NiK′(Ni)

K(Ni)

d lnNi

d lnG

=
GNG
N

1− σiK(Ni)Nk
N

These derivatives are:

−ψ N
k+N

φ− ψ N
k+N

(
GNG

N
− N
k + N

GNG

N

)
+ 1 + φ

GNG

N
− ψ N

k + N
GNG

N
= ω

GNG

N

−ψ N
k+N

φ− ψ N
k+N

(
kNk

N
− k

k + N
− N
k + N

kNk

N

)
+ φ

kNk

N
+ ψ

(
kz′ (k)

z (k)
− k

k + N
− N
k + N

kNk

N

)
= ω

kNk

N

Solving for GNG
N and kNk

N , evaluating at the optimal N and k, and using S = k
k+N

gives

GNG

N
=

1

ω − φ+ ψ (1− S) + ψ(1−S)
φ−ψ(1−S)

S

kNk

N
=

ψ(1−S)
φ−ψ(1−S)

S

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S

Plugging these in and rearranging gives

d lnN

d lnG
=

1

ω−φ+ψ(1−S)+
ψ(1−S)

φ−ψ(1−S)S

1− σ
ψ(1−S)

φ−ψ(1−S)S

ω−φ+ψ(1−S)+
ψ(1−S)

φ−ψ(1−S)S

=
1

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S(1− σ)

The responses of other outcomes to a shift in demand can also summarized in terms of scalability.

11



For other outcomes:

d ln k

d lnG
=
d lnx/y

d lnG
= σ

d lnN

d lnG
(35)

d ln S
1−S

d lnG
=
d ln kz′(k)

z(k)−kz′(k)

d ln k

d ln k

d lnG
=

(
1 +

kz′′

z′
− kz′ − z′′k

z − kz′

)
σ
d lnN

d lnG
= (σ − 1)

d lnN

d lnG
(36)

d lnR

d lnG
=
d lnGAψNφ

(
z(k)
k+N

)ψ
d lnG

= 1 + [φ− ψ(1− S)]
d lnN

d lnG
(37)

d ln R̄

d lnG
= 1 + [φ− 1− ψ(1− S)]

d lnN

d lnG
(38)

A.6.1 Intermediate Model, Case 1: σ < 1

Assumption 4 The parameters of the intermediate model satisfy

(i) σ < 1

(ii) ω ≥ φ

(iii) If ω = φ then Ai > Ā, where Ā satisfies
GĀψi Zx(0,1)

F
= 1.

Proposition 15 Suppose that Assumption 4 holds. Then there exists a unique solution, and it is

interior.

Proof. First, σ < 1 implies that K(N)
N

is strictly decreasing in N . To see this, note that d ln(K(N)/N)
d lnN

=

σ (K(N)) − 1 < 0. As a result φ − ψ N
K(N)+N

is strictly decreasing in N whenever it is positive.

Second, z(K(N))
K(N)+N

is strictly decreasing in N : since K(N) maximizes z(K(N))
K(N)+N

, the envelope theorem

gives d
dN

(
z(K(N))
K(N)+N

)
= d

dN
maxk

(
z(k)
k+N

)
= − z(K(N))

(K(N)+N)2
< 0. Finally Nφ−ω is weakly decreasing in N .

H(N) is thus continuous and strictly decreasing whenever it is positive:

H(N) =
GAψi
Fω

Nφ−ω︸ ︷︷ ︸
weakly

decreasing

(
z (K(N))

K(N) +N

)ψ
︸ ︷︷ ︸

strictly decreasing

(
φ− ψ N

K(N) +N

)
︸ ︷︷ ︸

strictly decreasing

In other words, if φ ≥ ψ, then H(N) is strictly decreasing for all N . If φ < ψ, letting N̄ denote

the unique positive solution to φ = ψ N̄

K(N̄)+N̄
, H(N) is strictly decreasing on

[
0, N̄

]
, H

(
N̄
)

= 0,

H(N) < 0 for N > N̄ .

We next show that limN→0 H(N) > 1. σ < 1 implies limN→0
K(N)
N

=∞ and limx→0 Zx (x, y) <∞,

or equivalently limk→0
z(k)
k

= Zx (0, 1) < ∞. The former implies limN→0
N

K(N)+N
= 0, and together,

they imply limN→0
z(K(N))
K(N)+N

= limN→0
K(N)

K(N)+N
limN→0

z(K(N))
K(N)

= 1× limk→0
z(k)
k

= Zx (0, 1). Together,
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these imply that

lim
N→0

H(N) =
GAψi
Fω

(
lim
N→0

Nφ−ω
)(

lim
N→0

z (K(N))

K(N) +N︸ ︷︷ ︸
=Zx(0,1)

)ψ
lim
N→0

(
φ− ψ N

K(N) +N

)
︸ ︷︷ ︸

=φ

If ω > φ, then limN→0N
φ−ω = ∞ and hence limN→0 H(N) = ∞. If φ = ω then Nφ−ω = 1 and

limN→0 H(N) =
GAψi
Fω

Zx(0, 1)ψφ =
GAψi Zx(0,1)ψ

F
> 1.

If ψ > φ, then we are done: H(N) is continuous and strictly decreasing on N ∈
[
0, N̄

]
with

H (0) > 1, H
(
N̄
)

= 0, and H(N) < 0 for N > N̄ . Thus there is a unique N∗ that satisfies

H (N∗) = 1, and N∗ ∈
(
0, N̄

)
.

We complete the proof by showing that, in the case of φ ≥ ψ, limn→∞H(N) = 0. σ < 1 implies

limx→∞ Zx(x, y) = 0, or equivalently limk→∞ z
′(k) = 0. Since K′(N) > 0, K′(N)

K′(N)+1
∈ (0, 1). Together,

these imply limN→∞
z(K(N))
K(N)+N

= limN→∞
z′(K(N))K′(N)

K′(N)+1
≤ limN→∞ z

′ (K(N)) = limk→∞ z
′(k) = 0. In

addition, limN→∞
N

K(N)+N
= 1 We thus have

lim
N→∞

H(N) =
GAψi
Fω

lim
N→∞

Nφ−ω︸ ︷︷ ︸
≤1

lim
N→∞

(
z (K(N))

K(N) +N

)ψ
︸ ︷︷ ︸

=0

lim
N→∞

(
φ− ψ N

K(N) +N

)
︸ ︷︷ ︸

=φ−ψ

= 0

Proposition 16 Suppose Assumption 4 holds. Then a firm responds to higher demand by in-

creasing size, scope, and scalability, but decreasing the scalable share of expertise: d lnN
d lnG

> 0,

d ln k
d lnG

= d lnx/y
d lnG

> 0,
d ln S

1−S
d lnG

< 0, d lnR
d lnG

> 0. If ω ≥ 1, then the firm responds to an increase in

demand by raising size per unit, d ln R̄
d lnG

> 0.

Proof. We begin with the response of scope. With σ < 1 and ω ≥ φ, all terms in the denominator

of (34) are weakly positive, as φ > ψ(1− S) at any interior solution. Further, if S ∈ (0, 1) then the

denominator must be strictly positive. Therefore d lnN
d lnG

> 0.

d ln k
d lnG

= d lnx/y
d lnG

> 0,
d ln S

1−S
d lnG

< 0 and d lnR
d lnG

> 0 follow directly from (35), (36), and (37) using

σ ∈ [0, 1) and φ > ψ(1− S).

For size per unit, (38) and (34) give

d ln R̄

d lnG
= 1 +

[φ− 1− ψ(1− S)]

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S(1− σ)

=
ω + ψ(1−S)

φ−ψ(1−S)
S(1− σ)− 1

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S (1− σ)

which is positive for S ∈ (0, 1) if ω ≥ 1.
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Proposition 17 Suppose Assumption 4 holds. Suppose further that, if φ > ψ, that ω ≥ 1−σ. For

firms with higher scalable share of knowledge, size is more sensitive to a change in demand, i.e.,
d
dS

d lnR
d lnG

> 0.

Proof. The response of size to demand is

d lnR

d lnG
= 1 +

[φ− ψ(1− S)]

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S(1− σ)

= 1 +
[φ− ψ(1− S)]

ω − (φ− ψ(1− S)) +
(

φ
φ−ψ(1−S)

− 1
)
S(1− σ)

Differentiating and letting Denom ≡ ω − (φ− ψ(1− S)) +
(

φ
φ−ψ(1−S)

− 1
)
S(1− σ) gives

d

dS

d lnR

d lnG
=

ψ

Denom

+
φ− ψ(1− S)

Denom2

{
ψ +

φ

[φ− ψ(1− S)]2
S(1− σ)ψ −

(
φ

φ− ψ(1− S)
− 1

)[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
Denom+ [φ− ψ(1− S)] +

φ

φ− ψ(1− S)
S(1− σ)− (1− S)

[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
ω +

(
2

φ

φ− ψ(1− S)
− 1

)
S(1− σ)− (1− S)

[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
ω +

(
2

φS

φ− ψ(1− S)
− 1

)
(1− σ) + (1− S)S

dσ

dS

}

Since S is inversely related to scalability, dσ
dS

is weakly positive as long as σ is non-increasing in

scalability. Consider first φ ≤ ψ. Then φS
φ−ψ(1−S)

≥ 1, so that the term in brackets is positive.

Consider next φ > ψ. Then φS
φ−ψ(1−S)

∈ [0, 1] and the term in brackets is positive as long as

ω > 1− σ.

Proposition 18 Suppose Assumption 4 holds. Suppose also that φ ≤ ψ and that σ is non-

increasing in scalability. Then, in response to the same increase in demand, firms with higher

scalable share of expertise raise scope and scalability by more, i.e.,

d

dS

(
d lnN

d lnG

)
> 0,

d

dS

(
d lnx/y

d lnG

)
> 0 .

Proof. The expression for the scope elasticity from Proposition 14 can be rearranged as

d lnNi

d lnG
=

1

ω − φ+ ψ(1− Si) + (1− Si) ψSi
φ−ψ(1−Si)(1− σi)

(39)
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Note that ψ ≥ φ implies that ψSi
φ−ψ(1−Si) is weakly decreasing in Si. Further, if σ is non-increasing in

scalability, then (1− σ) is non-increasing in the scalable share of expertise (because S is decreasing

in x/y). Together, these imply that the denominator of 39 is strictly decreasing in S, and hence
d lnNi
d lnG

is strictly increasing in S.

Since σ is weakly increasing in S and σ ∈ [0, 1), d lnx/y
d lnG

= σ d lnN
d lnG

is increasing in S.

A.6.2 Intermediate Model, Case 2: σ > 1

Proposition 19 If σ ∈ (1, 1 + ω), ω ≥ φ ≥ ψ, and, if ω = φ = ψ then
GAψi
F
Zx(1, 0)ψ < 1. Then

there exists a unique solution, and it is interior.

Proof. Consider first N → 0. Since limN→0
N

K(N)+N
= 1. Suppose first that φ > ψ. Then

limN→0

(
φ− ψ N

K(N)+N

)
= φ − ψ. Also, since Z (0, 1) > 0, limN→0

z(K(N))
K(N)+N

= limn→0
Z(0,1)

K(N)+N
= ∞.

We thus have

lim
N→0

H(N) =
GAψi
Fω

lim
N→0

Nφ−ω︸ ︷︷ ︸
≥1

lim
N→0

(
z (K(N))

K(N) +N

)ψ
︸ ︷︷ ︸

=∞

lim
N→0

(
φ− ψ N

K(N) +N

)
︸ ︷︷ ︸

=φ−ψ>0

=∞

Next suppose φ = ψ. Since σ < 1 + ω implies that limN→0
K(N)
N1+ω =∞. To see this, note that since

σ (0) < 1+ω, and σ is continuous, so that there is a k̄ and a σ̃ ∈ (σ (0) , 1 + ω) such that σ (k) ≤ σ̃ for

all k ∈
[
0, k̄
]
. Since NK′(N)

K(N)
= σ (K(N)) ≤ σ̃, which implies that for k < k̄, K(N) ≥ k̄K−1

(
k̄
)−σ̃

N σ̃,

so limN→0
K(N)
N1+ω ≥ limN→0

k̄K−1(k̄)
−σ
N σ̃

N1+ω =∞. Using this, we have

lim
N→0

H(N) =
GAψi
Fω

φZ (0, 1)ψ lim
N→0

Nφ−ω
(

1

K(N) +N

)φ K (N)

K(N) +N

=
GAψi
Fω

φZ (0, 1)ψ lim
N→0

K(N)

N1+ω

= ∞

Consider next N → ∞. Since limN→∞
N

K(N)+N
= 0, limN→∞ φ − ψ N

K(N)+N
= φ. In addi-

tion, limN→∞ z
′ (K(N)) = limk→∞ z

′(k) = Zx(1, 0) > 0. We also have limN→∞
K′(N)+1
K′(N)

= 1 +

limN→∞
1

K′(N)
= 1+limN→∞

N
K(N)

NK′(N)
K(N)

= 1. Together, these imply limN→∞
z(K(N))
K(N)+N

= limN→∞
z′(K(N))K′(N)

K′(N)+1
=

Zx(1, 0).

lim
N→∞

H(N) =
GAψi
Fω

lim
N→∞

Nφ−ω lim
N→∞

(
z (K(N))

K(N) +N

)ψ
︸ ︷︷ ︸

=Zx(1,0)ψ

lim
N→∞

(
φ− ψ N

K(N) +N

)
︸ ︷︷ ︸

=φ

=
GAψi
Fω

φZx(1, 0)ψ lim
N→∞

Nφ−ω

15



If φ < ω, then limN→∞H (N) = 0. If φ = ω, limN→∞H(N) < 1 only if
GAψi
F
Zx(1, 0)ψ < 1.

Finally, we find conditions under which H(N) is decreasing

H(N) =
GAψi
Fω

Nφ−ω
(
z (K(N))

K(N) +N

)ψ (
φ− ψ N

K(N) +N

)
Consider any N such that S ∈ (0, 1). Taking logs and differentiating gives

d lnH(N)

d lnN
= φ− ω + ψ

d ln
(
z(K(N))
K(N)+N

)
d lnN

+
−ψ N

K(N)+N

φ− ψ N
K(N)+N

d ln N
K(N)+N

d lnN

= φ− ω + ψ

[
K(N)z′ (K(N))

z (K (N))

NK′(N)

K(N)
−

K(N)d lnK(N)
d lnN

+N

K(N) +N

]

+
−ψ N

K(N)+N

φ− ψ N
K(N)+N

(
1−

K(N)d lnK(N)
d lnN

+N

K(N) +N

)

= φ− ω + ψ [Sσ − (Sσ + (1− S))] +
−ψ(1− S)

φ− ψ (1− S)
S(1− σ)

= φ− ω − ψ(1− S)− ψ(1− S)

φ− ψ(1− S)
S(1− σ)

=
ψ

φ− ψ(1− S)

{[
φ− ω
ψ
− (1− S)

]
[φ− ψ (1− S)]− (1− S)S(1− σ)

}
Using φ ≥ ψ and φ − ω ≤ 0, we can derive an upper bound by substituting φ for ψ inside the

curly brackets:

d lnH(N)

d lnN
≤ ψ

φ− ψ(1− S)

{[
φ− ω
φ
− (1− S)

]
[φ− φ(1− S)]− (1− S)S(1− σ)

}
=

ψ

φ− ψ(1− S)

{[
φ− ω
φ
− (1− S)

]
φS − (1− S)S (1− σ)

}
=

ψ

φ− ψ(1− S)
S {[φ− ω − (1− S)φ]− (1− S)(1− σ)}

=
ψS

φ− ψ(1− S)
{(φ− ω)S − (ω + (1− σ)) (1− S)}

< 0

Thus for any N such that S ∈ (0, 1) (i.e., and N ∈ (0,∞)) d lnH(N)
d lnN

< 0. This means that there is a

unique N∗ such that H (N∗) = 1, and it is interior and the global optimum.

Assumption 5 Assume σ ∈ (1, 1 + ω) and ω > φ ≥ ψ.

Proposition 20 Suppose that Assumption 5 holds. Firms respond to increase in demand by in-

creasing size, scope, scalability, and the scalable share of knowledge: d lnR
d lnG

> 0, d lnN
d lnG

> 0, d lnx/y
d lnG

>

16



0,
d ln S

1−S
d lnG

> 0. If ω is sufficiently large (ω > σ), then firms respond to an increase in demand by

raising size per unit, i.e., d ln R̄
d lnG

> 0.

Proof. We first show that scope increases with demand. To do this, we rearrange (34) as

d lnN

d lnG
=

1

ψ
φ−ψ(1−S)

{[
ω−φ
ψ

+ (1− S)
]

[φ− ψ(1− S)] + (1− S)S(1− σ)
}

To show that the term in the curly brackets is positive for S ∈ (0, 1), we can use φ ≥ ψ to get[
ω − φ
ψ

+ (1− S)

]
[φ− ψ(1− S)] ≥

[
ω − φ
φ

+ (1− S)

]
[φ− φ(1− S)]

=

[
ω − φ
φ

+ (1− S)

]
φS

= (ω − φ)S2 + (1− S)Sω

> (1− S)S(σ − 1)

where the last line uses ω ≥ φ and ω > σ.

The positive responses of revenue, scalability, and scalable share directly from d lnN
d lnG

> 0 and

(37), (35), (36).

For size per unit, (38) and (34) give

d ln R̄

d lnG
= 1 +

[φ− 1− ψ(1− S)]

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S(1− σ)

=
ω + ψ(1−S)

φ−ψ(1−S)
S(1− σ)− 1

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S (1− σ)

=

[
ω +

ψ(1− S)

φ− ψ(1− S)
S(1− σ)− 1

]
d lnN

d lnG

The term in brackets is positive because ψ(1−S)
φ−ψ(1−S)

S ≤ φ(1−S)
φ−φ(1−S)

S = 1−S ≤ 1, so that ψ(1−S)
φ−ψ(1−S)

S(1−
σ) ≥ (1−σ). Thus if ω > σ, then the term in brackets is strictly positive. This along with d lnN

d lnG
> 0

implies that d ln R̄
d lnG

> 0.

Proposition 21 Suppose that assumption 5 holds and that σ is non-decreasing in scalability. Then

firms with higher scalability have a higher sensitivity of size to demand, i.e., d
dS

(
d lnR
d lnG

)
> 0.
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Proof. The response of size to demand is

d lnR

d lnG
= 1 +

[φ− ψ(1− S)]

ω − φ+ ψ(1− S) + ψ(1−S)
φ−ψ(1−S)

S(1− σ)

= 1 +
[φ− ψ(1− S)]

ω − (φ− ψ(1− S)) +
(

φ
φ−ψ(1−S)

− 1
)
S(1− σ)

Differentiating and letting Denom ≡ ω − (φ− ψ(1− S)) +
(

φ
φ−ψ(1−S)

− 1
)
S(1− σ) gives

d

dS

d lnR

d lnG
=

ψ

Denom

+
φ− ψ(1− S)

Denom2

{
ψ +

φ

[φ− ψ(1− S)]2
S(1− σ)ψ −

(
φ

φ− ψ(1− S)
− 1

)[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
Denom+ [φ− ψ(1− S)] +

φ

φ− ψ(1− S)
S(1− σ)− (1− S)

[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
ω +

(
2

φ

φ− ψ(1− S)
− 1

)
S(1− σ)− (1− S)

[
(1− σ)− S dσ

dS

]}
=

ψ

Denom2

{
ω +

(
2

φS

φ− ψ(1− S)
− 1

)
(1− σ) + (1− S)S

dσ

dS

}
ψ

Denom2

{
ω + 1− σ + 2

(
1− φS

φ− ψ(1− S)

)
(σ − 1) + (1− S)S

dσ

dS

}
The term in brackets is positive because ω + 1− σ > 0 and φ ≥ ψ which implies φS

φ−ψ(1−S)
∈ [0, 1].

Proposition 22 Suppose that Assumption 5 holds. Suppose also that σ < 1 + φ and that σ is

non-decreasing in k. Then firms with higher scalability respond to an increase in demand by raising

scope, scalability, and the scalable share of expertise. i.e.,

d

dS

(
d lnN

d lnG

)
> 0,

d

dS

(
d ln k

d lnG

)
> 0,

d

dS

(
d ln S

1−S

d lnG

)
> 0.

Proof. We first show that if σ ≤ 1 + φ then d lnN
d lnG

is increasing in S. Recall from (34) as that we

can express the response to scope as

d lnN

d lnG
=

1

ω − φ+ ψ(1− S)
{

1− φS
φ−ψ(1−S)

σ−1
φ

}
Note that φS

φ−ψ(1−S)
∈ [0, 1] and is increasing in S. Since (1−S) is decreasing in S and 1− φS

φ−ψ(1−S)
1−σ
φ

is decreasing in S (because σ−1
φ
≤ 1 and σ is weakly increasing in S), so that the denominator is

decreasing in S. As a result, d lnN
d lnG

is increasing in S.

18



Since σ is weakly increasing in S and σ > 1, d ln k
d lnG

= σ d lnN
d lnG

and
d ln S

1−S
d lnG

= (σ − 1)d lnN
d lnG

are both

increasing in S.

A.7 General Model

The firm’s profit is

πi = max
N,x,y,E

GNφ [AiZ (x, y)]ψ − FNω −HEγ subject to xµ +Nyµ ≤ E

Let z (k) = Z
(
k1/µ, 1

)µ
, where k =

(
x
y

)µ
. This can be expressed as

πi = max
N,k,y,E

GNφAψi z(k)ψ/µyψ − FNω −HEγ subject to (k +N)yµ ≤ E

Eliminating y gives

πi = max
N,k,E

GNφAψi

[
z(k)

E

k +N

]ψ/µ
− FNω −HEγ

= max
N,k,E

GAψi N
φ

(
z(k)

k +N

)ψ/µ
Eψ/µ − FNω −HEγ

The optimal choice of E satisfies

GAψi N
φ

(
z(k)

k +N

)ψ/µ
ψ

µ
Eψ/µ−1 = γHEγ−1

or E =

[
GAψi N

φ
(
z(k)
k+N

)ψ/µ
ψ
γµ

1
H

] 1
γ−ψ/µ

. Plugging this into the expression for profit yields

πi = max
N,k

{
1− ψ

γµ

}[
ψ

γµ

1

H

] ψ/µ
γ−ψ/µ

[
GAψi N

φ

(
z(k)

k +N

)ψ/µ] 1

1− ψ
γµ

− FNω

Define the following variables

φ̃ = φ
1

1− ψ
γµ

ψ̃ =

ψ
µ

1− ψ
γµ

Ãi =
Aµi
H1/γ

G̃ =

{
1− ψ

γµ

}[
ψ

γµ

] ψ̃
γ

G
1

1− ψ
γµ
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Substituting these into the expression for firm i’s profit gives

πi = max
N,k

G̃Ãψ̃i N
φ̃

(
z(k)

k +N

)ψ̃
− FNω

Note that the maximization problem is the same as (33) of the intermediate model, so the same

analysis applies. Further, as in the medium version of the problem, the scalable share of knowledge

is

S ≡ xµ

xµ +Nyµ
=

k

k +N

Finally, G̃ =
{

1− ψ
γµ

}[
ψ
γµ

] ψ̃
γ
G

1

1− ψ
γµ and x/y = k1/µ imply

d lnR

d lnG
=

(
1− ψ

µγ

)
d lnR

d ln G̃
> 0 (40)

d lnN

d lnG
=

(
1− ψ

µγ

)
d lnN

d ln G̃
> 0 (41)

d lnx/y

d lnG
=

1

µ

(
1− ψ

µγ

)
d ln k

d ln G̃
> 0 (42)

d lnS

d lnG
=

(
1− ψ

µγ

)
d lnS

d ln G̃
> 0 (43)

d ln R̄

d lnG
=

(
1− ψ

µγ

)
d ln R̄

d ln G̃
> 0 (44)

Lemma 2 Let σ (x/y) be the elasticity of substitution of Z (x, y) and let σ̃ (x̃/ỹ) be the elasticity

of substitution of the production function Z̃ (x̃, ỹ) ≡ Z
(
x̃1/µ, ỹ1/µ

)µ
. Then σ and σ̃ are related by

σ̃(k)−1
σ̃(k)

= 1
µ

σ(k1/µ)−1

σ(k1/µ)
.

Proof. Note that σ = ZxZy
ZZxy

, and σ̃ =
Z̃x̃Z̃ỹ
Z̃Z̃x̃ỹ

. Since both Z and Z̃ exhibit constant returns to scale,

their derivatives are linked by

Z̃ (k, 1) = Z
(
k1/µ, 1

)µ
The first derivatives are linked by

Z̃x̃ = Zµ−1Zxk
1/µ−1

or, letting α ≡ kZ̃x̃(k,1)

Z̃(k,1)
,

α ≡ kZ̃x̃

Z̃
=
k
(
Zµ−1Zxk

1/µ−1
)

Zµ
=
k1/µZx
Z

Constant returns to scale implies

Z̃ỹ (k, 1) = Z̃ − kZ̃x = Zµ − Zµ−1Zxk
1/µ
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Differentiating once more with respect to k gives an expression for the cross-derivative:

Z̃x̃ỹ (k, 1) = Zµ−1Zxk
1/µ−1 −

(
1− 1

µ

)
Zµ−2Z2

xk
1/µk1/µ−1 − 1

µ
Zµ−1Zxyk

1/µk1/µ−1 − 1

µ
Zµ−1Zxk

1/µ−1

Using α = k1/µZx
Z

= 1−Zy
Z

, the fact that constant returns to scale of Z implies that k1/µZxx
(
k1/µ, 1

)
=

−Zxy
(
k1/µ, 1

)
, and σ ≡ ZxZy

ZZxy
, we can rearrange this as

kZ̃x̃ỹ (k, 1)

Z̃ (k, 1)
=

Zxk
1/µ

Z
−
(

1− 1

µ

)(
Zxk

1/µ

Z

)2

− 1

µ

k1/µk1/µZxx
Z

− 1

µ

Zxk
1/µ

Z

= α−
(

1− 1

µ

)
α2 +

1

µ
α (1− α)

ZZxy
ZxZy

− 1

µ
α

= α (1− α)

[(
1− 1

µ

)
+

1

µ

1

σ

]
Finally, the σ̃ can be expressed as

1

σ̃
=

Z̃Z̃x̃ỹ

Z̃x̃Z̃ỹ
=

1
kZ̃x̃
Z̃

1
Z̃ỹ
Z̃

kZ̃x̃ỹ

Z̃
=

1

α (1− α)
α (1− α)

[(
1− 1

µ

)
+

1

µ

1

σ

]
=

(
1− 1

µ

)
+

1

µ

1

σ

Note that this can be rearranged as
σ̃ − 1

σ̃
=

1

µ

σ − 1

σ

Note that σ̃ is between 1 and σ, and approaches 1 as µ grows large.

A.7.1 General Model, Substitutes: σ > 1

Let σ̃ satisfy σ̃−1
σ̃

= 1
µ
σ−1
σ

. Note that σ̃

Assumption 6 The parameters satisfy

• 1 < σ̃ < ω

• 1− φ
ω
− ψ

µγ
≥ 0

• φ ≥ ψ
µ

• If 1− φ
ω
− ψ

µγ
= 0 and φ = ψ

µ
, then

(
1− ψ

γµ

)1− ψ
γµ
[
ψ
γµ

] ψ
γµ GAψi Zx(1,0)

ψ
µ

F
1− ψ

γµH
ψ
γµ

< 1

Proposition 23 Under Assumption 6, there is a unique solution, and it is interior.
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Proof. From Proposition 19, there is a unique solution that is interior if if 1 < σ̃ < ω and

ω ≥ φ̃ ≥ ψ̃, and, if ω = φ̃ = ψ̃, that
G̃Ãψ̃i
F
Zx(1, 0)ψ̃ < 1. These conditions are equivalent to

Assumption 5.

Proposition 24 Suppose that Assumption 6 holds. Firms respond to an increase in demand by

increasing size, scope, scalability, and the scalable share of knowledge: d lnR
d lnG

> 0, d lnN
d lnG

> 0, d lnx/y
d lnG

>

0, and
d ln S

1−S
d lnG

> 0. If ω is sufficiently large, then ω > σ̃, then firms respond to an increase in demand

by increasing size per unit, d ln R̄
d lnG

> 0.

Proof. This follows from Proposition 20 and (40), (41), (42), (43), and (44).

Proposition 25 Suppose that Assumption 6 holds and that σ is non-decreasing in scalability. Then

firms with higher scalability have a higher sensitivity of size to demand, i.e., d
dS

(
d lnR
d lnG

)
> 0.

Proof. This follows from Proposition 21 and (40).

Proposition 26 Suppose that Assumption 6 holds. Suppose further that σ̃ ≤ 1 + φ

1− ψ
µγ

and that σ

is non-decreasing in scalability. Then firms with higher scalability respond to an increase in demand

by raising scope, scalability, and the scalable share of knowledge by more, i.e.,

d

dS

(
d lnN

d lnG

)
> 0,

d

dS

(
d lnx/y

d lnG

)
> 0,

d

dS

(
d lnS

d lnG

)
> 0

Proof. This follows from Proposition 22 and (41), (42), and (43).

A.7.2 General Model, Complements: σ < 1.

Again, let σ̃ satisfy σ̃−1
σ̃

= 1
µ
σ−1
σ

. Note that σ̃ ∈ (σ, 1), with σ̃(σ, µ) approaching 1 as µ grows large.

Assumption 7 The parameters satisfy

• σ̃ < 1

• 1− φ
ω
− ψ

µγ
≥ 0

• If 1− φ
ω
− ψ

µγ
= 0, then

{
1− ψ

γµ

}1− ψ
γµ
[
ψ
γµ

] ψ
γµ GAψi Zx(0,1)

ψ
µ

F
1− ψ

γµH
ψ
γµ

> 1

Proposition 27 Under Assumption 7, there is a unique solution, and it is interior.

Proof. From proposition 15, there is a unique solution that is interior if if σ̃ < 1 and ω ≥ φ̃, and,

if ω = φ̃, that
G̃Ãψ̃i
Fi
Zx (1, 0)ψ̃ > 1. These conditions are equivalent to Assumption 4.
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Proposition 28 Suppose that Assumption 7 holds. Firms respond to an increase in demand by

increasing size, scope, and scalability, and decreasing the scalable share of knowledge: d lnR
d lnG

> 0,

d lnN
d lnG

> 0, d lnx/y
d lnG

> 0, and
d ln S

1−S
d lnG

> 0. If ω > 1 then firms respond to an increase in demand by

increasing size per unit, d ln R̄
d lnG

> 0.

Proof. This follows from proposition 20 and (40), (41), (42), (43), and (44).

Proposition 29 Suppose that Assumption 7 holds and that σ is non-increasing in scalability. Sup-

pose further that, if φ > ψ
µ

, that ω ≥ 1 − σ̃. Then firms with higher scalability have a higher

sensitivity of size to demand, i.e., d
dS

(
d lnR
d lnG

)
> 0.

Proof. This follows from Proposition 17 and (40).

Proposition 30 Suppose that Assumption 7 holds. Suppose further that φ ≤ ψ
µ

and that σ is non-

increasing in scalability. Then firms with higher scalability respond to an increase in demand by

raising scope and scalability by more, i.e.,

d

dS

(
d lnN

d lnG

)
> 0,

d

dS

(
d lnx/y

d lnG

)
> 0

Proof. This follows from Proposition 22 and (41) and (42).

A.8 Richer Heterogeneity

The firm’s profit is

πi = max
N,x,y

GNφ [AiZ(x, y)]ψ − FiNω −Hi

[(
x

axi

)µ
+N

(
y

ayi

)µ]γ
We make the substitutions

Ñ =

(
axi
ayi

)µ
N

k = (x/y)µ

z(k) = Z(k1/µ, 1)µ

πi = max
Ñ,k,y

GAψi

(
ayi
axi

)µφ
Ñφz(k)ψ/µyψ − Fi

(
ayi
axi

)µω
Ñω − Hi

(axi )
µγ

[
k + Ñ

]γ
yµγ
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Solving for y, factoring out Fi

(
ayi
axi

)µω
, and making the substitutions

φ̃ =
φ

1− ψ
µγ

ψ̃ =
ψ/µ

1− ψ
µγ

G̃ =

(
1− ψ

γµ

)[
ψ

γµ

] ψ̃
γ

G
1

1− ψ
γµ

Ãi =

[
(axi )

1+ω−φ̃
ψ̃ (ayi )

−ω−φ̃
ψ̃ Ai

]µ
F

1/ψ̃
i H

1/γ
i

yields

πi = Fi

(
ayi
axi

)µω {
max
Ñ,k

G̃Ãψ̃i Ñ
φ̃z(k)ψ̃ − Ñω

}
Let Ri, Ni, xi/yi, and Si be firm i’s size, scope, scalability, and scalable share. Let R̃i ≡ Fi

(
ayi
axi

)µω
Ri

ans S̃i = ki
ki+Ñi

. Since the problem inside the brackets is identical A.7, we can follow the exact

derivations in Appendix A.7 to get that

d ln Ñi

d ln G̃
=

1

ω − φ̃+ ψ̃(1− S̃i) + ψ̃(1−S̃i)
φ̃−ψ̃(1−S̃i)

S̃i(1− σ̃i)

d lnx/y

d ln G̃
= σ̃

d ln Ñ

d ln G̃

d ln S̃
1−S̃

d ln G̃
= (σ̃ − 1)

d ln Ñ

d ln G̃
d ln R̃

d ln G̃
= 1 +

[
φ̃− ψ̃(1− S̃i)

] d ln Ñ

d ln G̃

Finally, note that Si =

(
x
ax
i

)µ
(
x
ax
i

)µ
+N

(
y

a
y
i

)µ = k
k+Ñ

= S̃i, and that Ñi and R̃i are proportional to Ni and

Ri with constants of proportionality that do not change with demand. As a result, the elasticities

of size, scope, size per unit, scalability and scalable share with respect to demand are the same as

in section A.7, and can be expressed in terms of only the scalable share S and parameters that are

common across firms.

Since Si = S̃i = kiz
′(ki)

z(ki)
=

(
xi
yi

)µ
z′
((

xi
yi

)µ)
z
((

xi
yi

)µ) , these elasticities can be expressed in terms of scalability

and parameters that are common across firms.
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Lastly, under Assumptions 2 and 3, the elasticities of size, scope, scalability, and scalable share

are increasing in the scalable share, or equivalently, increasing in scope.
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B Data Appendix

B.1 NielsenIQ

The product data come from the NielsenIQ Retail Measurement Services (RMS), which track weekly

sales volumes and quantities sold at the barcode (UPC) level using point-of-sale systems in retail

stores, covering the period 2006–2015. Each UPC is a 12-digit Universal Product Code uniquely

assigned to a specific good.

The main advantage of the RMS dataset is its size and coverage. It captures approximately

$2 trillion in sales, representing 53% of grocery store sales, 55% of drug store sales, 32% of mass

merchandiser sales, and smaller shares of convenience and liquor store sales. Data are collected

from over 40,000 stores across 90 retail chains, covering 371 metropolitan statistical areas (MSAs)

and 2,500 counties. In comparison to household-level scanner datasets, NielsenIQ RMS covers a

wider range of products because it captures the universe of all transactions within the categories it

covers, rather than the purchases made by a sample of households.

The original data consist of more than one million distinct products identified by barcodes and

organized into a hierarchical structure. Each barcode is classified into one of 1,070 product mod-

ules, which are grouped into 104 product groups, and further aggregated into 10 major departments.

These departments are: Health and Beauty Aids, General Merchandise, Dry Grocery (e.g., baby

food, canned vegetables), Frozen Foods, Dairy, Deli, Packaged Meat, Fresh Produce, Non-Food Gro-

cery, and Alcohol. For example, a 31-ounce bag of Tide Pods has UPC 037000930389, is produced

by Procter & Gamble, and is classified in the “Detergent-Packaged” module, within the “Deter-

gent” product group, which falls under the “Non-Food Grocery” department. The “Detergent”

product group includes several modules, such as automatic dishwasher compounds, heavy-duty liq-

uid detergents, light-duty detergents, packaged detergents, dishwasher rinsing aids, and packaged

soap.

NielsenIQ RMS data do not include direct information on manufacturing firms. However, prod-

ucts can be linked to firms using data from the GS1 US Data Hub. GS1 is the organization that

issues barcode prefixes to producers. To obtain a UPC, a firm must first acquire a GS1 company

prefix—a five- to ten-digit number that identifies the firm within its product UPCs. The GS1

database includes the name and address of the firm associated with each prefix, allowing us to

match UPCs in the NielsenIQ RMS data to firm identities. A “firm” in this context is defined as

the entity that purchased the prefix from GS1, which is typically the manufacturer—for example,

Procter & Gamble.

Table A.I presents firm characteristics by type of censoring. Of the approximately 23,000 firms

in the sample, the age of about 9,000 can be measured, while the remaining 14,000 were established

before 2006.
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Table A.I: Summary Statistics of Firms by Censoring

All By Censoring Type
Complete Right Left Right&Left

Total # of firms 22,938 4,425 4,726 6,107 7,680

Duration (quarters)
average 23 11 17 16 40
less than 4 16 35 18 20 0
less than 16 44 81 58 61 0
above 28 43 3.9 18 18 100

Sales (quarterly, $1,000)
mean 1,183 8.4 24 111 3,425
25th percentile .6 .1 .1 1.3 8.9
median 6 .5 1.1 6.8 57
75th percentile 52 3.3 7.7 36 366
95th percentile 1,177 32 87 350 7,387

Products (quarterly)
mean 12 2.1 3.2 5.3 27
25th percentile 1 1 1 1.3 2.7
median 2.8 1 1.8 3 6.7
75th percentile 6.6 2.5 3.5 5.5 18
95th percentile 37 5.8 10 16 98

Sectors (quarterly)
mean 1.7 1.1 1.3 1.4 2.4
25th percentile 1 1 1 1 1
median 1 1 1 1 1.4
75th percentile 1.7 1 1.1 1.5 2.5
95th percentile 4 2 2.3 3 6.6

Notes:The table presents summary statistics for firms included in the baseline pooled sample covering the period
2006Q1–2015Q4. Firms that are already active in 2006Q1 or 2006Q2 are classified as left-censored, while firms with sales
in 2015Q3 or 2015Q4 are classified as right-censored. Firms that both enter and exit within the sample period are labeled as
“Complete.” Firms for which we observe entry but not exit are labeled as “Right,” and those for which we observe exit but
not entry are labeled as “Left.” Firms for which neither entry nor exit can be determined are classified as both right- and
left-censored (“Right&Left”). For each group, the table reports the total number of observations, as well as summary statistics
on firm duration, sales, number of firms, and number of sectors. Under “Duration,” we report the average number of quarters
a firm is observed, along with the share of firms observed for fewer than 4 quarters, between 4 and 16 quarters, and more than
28 quarters. Sales statistics refer to average quarterly sales (in thousands of dollars), deflated using the Consumer Price Index
for All Urban Consumers. The table also reports the average and distribution statistics for total sales, number of products,
and number of sectors. “Sectors” refers to the number of distinct product groups as classified by NielsenIQ..

B.2 NETS Data

The National Establishment Time Series (NETS) database is produced by Walls & Associates in

collaboration with Dun & Bradstreet, converting archival establishment data into a longitudinal

panel of establishment-level information. We use the version of the dataset that covers annual

observations on specific lines of business at unique locations across the U.S. for the period 1990–2017.

The NETS data allow us to observe sales and employment for each line of business identifier. For

each identifier, we can track outcomes over time at the 8-digit Standard Industrial Classification

(SIC) level and specific geographic coordinates (latitude and longitude). Additionally, each line

of business can be linked to its headquarters using firm identifiers, with firms defined based on a
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common headquarters establishment.

Crane and Decker (2019) assesses the representativeness of NETS in the cross section by com-

paring it to U.S. Census Bureau data. They find that the static distributions of NETS are generally

comparable to official sources across establishment size, industry, and geographic cells, although

limitations arise particularly in the coverage of small firms. The main weaknesses of the NETS

data pertain to annual establishment growth and firm lifecycle patterns. Since our analysis focuses

on cross-sectional differences in long-term growth rates, it is less likely to be affected by these

measurement limitations.

Our analysis focuses on changes in firm size and scope during the period 2006–2015 in response

to the China shock. The baseline sample includes all firm-sector observations for which we can

measure the shock. At both the firm-sector-year and firm-sector-location-year levels, we compute

total size—measured as either total employment or total sales—and the number of distinct business

lines (scope). Sectors are mapped to 4-digit SIC codes, and locations are mapped to metropolitan

statistical areas (MSAs).

We conduct several robustness exercises to ensure the reliability of the patterns documented in

the paper. Crane and Decker (2019) provides guidance on minimizing measurement error in the

NETS data. Following their recommendations, we construct alternative samples that exclude small

firm-sector observations (fewer than five employees) and single-establishment firms (those operating

in only one location). We also examine the sensitivity of our results to alternative definitions of the

firm. In our baseline, we use an iterative procedure to identify the ultimate headquarters. Although

the original data link each business line to a direct headquarters, some of these headquarters are

themselves subsidiaries of other headquarters. We resolve this by “rolling up” all directly and

indirectly connected entities into a single firm identifier, capturing the ultimate corporate parent.

As a further robustness check, we implement a procedure that associates business lines in ways that

account for mergers and acquisitions, following the approach in Crane and Decker (2019).

B.3 Sectoral Shocks: China Import Penetration Shock

In this section, we describe the data sources used to update the China Shock measure developed by

Autor et al. (2013). U.S. shipments (Yj,06) at the 4-digit 1987 SIC industry level are obtained from

the NBER-CES database.41 Gross output (Y Oj,06) at the 4-digit ISIC Rev. 3 industry level for

several European countries comes from UNIDO. Following Bai and Stumpner (2019), we focus on the

five largest European economies—Germany, France, the United Kingdom, Italy, and Spain—which

also have the most comprehensive coverage at the 4-digit ISIC Rev. 3 level in the UNIDO dataset.

Trade flows (Mj,06,Ej,06) for both the U.S. and European countries are sourced from UN Comtrade

at the HS 6-digit level, using the CEPII-BACI database (Gaulier and Zignago, 2010).42 While this

differs slightly from the trade flow data used in Acemoglu et al. (2016), which come directly from

41http://www.nber.org/nberces
42http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=1
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UN Comtrade, the CEPII-BACI dataset offers a harmonized version that reconciles discrepancies

between exporter and importer reports. This harmonization substantially expands the number of

countries with available trade data (up to 150 countries), relative to the original dataset. Lastly,

we use the PCE deflator from BEA-NIPA for the U.S. and from Eurostat for the five European

countries in our analysis.

Figure A.1: China import penetration 2006–2015 by sector

(a) NielsenIQ (b) NETS
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Note: The figure shows the average value of the baseline measure of China import penetration from 2006 to 2015,
∆IP 1

j,06−15, along with values for a selected group of sectors: the top 20 and bottom 20 by import penetration.
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C Scalability

C.1 Illustrative Example

We measure firm-level scalability using the following index:

SI imjt ≡ 1−
Uniqueimjt

Scopeimjt × NumAttributesmjt

where Uniqueimjt denotes the number of distinct characteristics used across all products sold by

firm i in module m, sector j, and time t. Scopeimjt is the number of distinct products, and

NumAttributesmjt is the number of active attributes in the module. We illustrate this with a

simplified example based on a firm selling incandescent lamps.

Table C1: Measuring Scalability: An example (Lamps, incandescent)

Firm Product Attribute
Style Use

General Electric 1 Clear Nite Fixture
General Electric 2 Halogen Appliance
General Electric 3 Clear Bath & Vanity
General Electric 4 Clear Ceiling Fan
General Electric 5 Frost Chandelier

Firm A sells 5 products, described along two attributes: style and use. Within these attributes,

the firm uses several distinct characteristics:

• Unique characteristics: e.g., clear, halogen, nite fixture, etc.

• Attributes: style, use

We compute attribute-level and firm-level scalability as follows:

Style: SStyle,GE ≡ 1− Unique Characteristics

Scope
= 1− 3

5
= 0.4

Use: SUse,GE ≡ 1− Unique Characteristics

Scope
= 1− 5

5
= 0

Firm level: SGE ≡ 1− Unique Characteristics

Scope× Number of Attributes
= 1− 5 + 3

5 + 5
= 0.2

This simple example shows how the scalability index captures the extent to which firms rely

on a common set of characteristics to define their products. Higher values of the index indicate

more standardized product design, reflecting greater scalable expertise. In our data, the average

scalability index is 0.47, with a standard deviation of 0.3.
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C.2 Bootstrap

A potential concern is that our scalability index may mechanically increase as firms introduce more

products. To address this, we construct an alternative index by randomly assigning products—

within each sector—to firms of different sizes. We then compute a bootstrapped version of the

scalability index, which serves as a reference. This alternative index captures the mechanical re-

lationship between scalability and the number of products. Throughout the paper, our baseline

scalability measure is always interpreted relative to this bootstrapped benchmark.

Panel (a) of Figure C1 displays the original index (x
y
) alongside the bootstrapped version. The

purple dots indicate that part of the positive relationship between x
y

and firm scope arises mechan-

ically: as firms grow, they are more likely to have products that share attributes. However, our

measure captures a size-dependent relationship that goes beyond what would occur by chance. The

red dots represent the difference between the original and bootstrapped indices, which also increases

with firm size. Panel (b) shows the ratio of the original to the bootstrapped index. Recall that we

use the log of the ratio between the observed scalability ratio and its bootstrapped counterpart in

all our specifications. This ratio increases as firms add products to their portfolio, indicating that

larger firms replicate specific characteristics more frequently across products.

Figure C1: Scalability - Alternative (Bootstrapped) Version

(a) x
y

(b) x
y

Bootstrap

Note: Panel (a) shows x
y as a function of the total number of products sold by the firm. The blue dots represent

estimates using the original measure. The purple dots correspond to estimates of x
y when the sample of products

is randomized within modules and across firms. The red dots represent the difference between the original measure
and the bootstrapped version. Panel (b) displays the ratio of the original x

y measure to the bootstrapped version.
All values of x

y are computed using the full product portfolio of each firm over the period 2006 to 2015.
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D Robustness Checks and Supplementary Results

D.1 Multi-Product Data

Table D1: Cross-Sectional Relationship: Scalability, Scope and Size (Sectors)

(1) (2) (3) (4) (5) (6)

size 0.214*** 0.307*** 0.352***
(0.021) (0.037) (0.014)

scope 0.204*** 0.281*** 0.350***
(0.022) (0.031) (0.011)

Observations 143,140 143,140 71,354 71,351 364,592 364,577
R-squared 0.368 0.376 0.446 0.465 0.297 0.331
Firm Y Y Y Y Y Y
Period-Sector Y Y Y Y Y Y
Sample Food Food Non-Food Non-Food Module Module

Note: The table shows the results from estimating equation 22 using NielsenIQ data. The dependent variable is
the log of scalability, and the independent variables are the logs of size (revenue) and scope. All variables are
standardized relative to the mean within sector and year. The scalability index is adjusted relative to the alternative
(bootstrapped) version. Columns (1)–(2) include the following departments: Dry Grocery, Frozen Food, Dairy, Deli,
Packaged Meat, and Fresh Produce. Columns (3)–(4) include Health & Beauty Care, Non-Food Grocery, and General
Merchandise. Column (5) defines sectors at the module level.

Table D2: Response to Shocks: Scalability (Alternative Growth Rates)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ size ∆ scope ∆ ln
(
x
y

)
∆ size ∆ scope ∆ ln

(
x
y

)
∆ size ∆ scope ∆ ln

(
x
y

)
∆G × ln

(
x
y

)
0.0133** 0.0105** 0.0108*** 0.0087 0.0066 0.0105*** 0.0092 0.0102** 0.0106***

(0.006) (0.004) (0.002) (0.007) (0.004) (0.003) (0.006) (0.004) (0.002)
∆G × scope 0.0195*** 0.0168*** 0.0017

(0.006) (0.004) (0.002)
∆G × size 0.0398*** 0.0028 0.0028

(0.008) (0.005) (0.003)

Observations 14,186 14,186 13,488 14,186 14,186 13,488 14,186 14,186 13,488
R-squared 0.144 0.122 0.247 0.145 0.124 0.247 0.146 0.122 0.247
Sector Y Y Y Y Y Y Y Y Y

Note: The table reports the results from estimating equation (23) for the period 2006–2015. The dependent variable
in Columns (1) and (4) is the change in the (log of) size (revenue) of firm i in sector j; in Columns (2) and (5),
the change in scope; and in Columns (3) and (6), the change in scalability. Changes in the dependent variables are
computed following Davis and Haltiwanger (1992), as 2(yt − yt−1)/(yt + yt−1). The key independent variable is the
China import penetration shock from 2006–2015, interacted with the firm’s baseline level of scalability or scope in
2006. All specifications include sector fixed effects and controls for firm size, size squared, scope, and scope squared.
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Table D3: Response to Shocks: Size and Scope (Alternative Growth Rates)

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G × size 0.017*** 0.001
(0.005) (0.004)

∆G × scope 0.014*** 0.017***
(0.005) (0.003)

Observations 17,138 17,138 17,138 17,138
R-squared 0.163 0.150 0.163 0.152
Sector Y Y Y Y

Note: The table reports the results of estimating (25). The dependent variable is either the log change in total
employment of firm i in sector j from 2006 to 2015, or the change in the number of products or plants. The change
in the dependent variables are calculated as in Davis and Haltiwanger (1992), i.e. 2(yt − yt−1)/(yt + yt−1). The
table reports βRR (Columns 1), βNR (Columns 2), βRN (Columns 3), and βNN (Columns 4). All regressions use the
NielsenIQ data and the China import penetration shock from 2006 to 2015. Specifications include robust standard
errors, sector fixed effects, and firm-level controls: scalability, log size, log size squared, log scope, and log scope
squared.

D.2 Multi-Establishment Data

Table D4: Response to Shocks: Size and Scope (Revenue as Size)

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G× size 0.127*** 0.022**
(0.033) (0.011)

∆G× scope 0.119** 0.059***
(0.051) (0.021)

Observations 321,518 321,518 321,108 321,115
R-squared 0.096 0.019 0.030 0.242
Sector Y Y Y Y

Note: The table reports the results of estimating (25). The dependent variable is either the log change in revenue
of firm i in sector j from 2006 to 2015, or the change in the number of plants. The table reports βRR (Column 1),
βNR (Column 2), βRN (Column 3), and βNN (Column 4). All regressions use the NETS data and the China import
penetration shock from 2006 to 2015. All the specifications include sector effects and robust standard errors.
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Table D5: Response to Shocks: Size and Scope (Alternative Growth Rates)

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G× size 0.115*** 0.123***
(0.016) (0.015)

∆G× scope 0.051*** 0.046***
(0.013) (0.011)

Observations 711,264 711,264 710,993 710,993
R-squared 0.035 0.043 0.027 0.031
Sector Y Y Y Y

Note: The table reports the results of estimating equation (25) using NETS data. The dependent variable is the log
change in revenue (Columns 1 and 3) or the log change in the number of establishments (Columns 2 and 4) for firm i
in sector j. Changes are computed as in Davis and Haltiwanger (1992), i.e., 2(yt− yt−1)/(yt + yt−1). All regressions
include sector fixed effects and robust standard errors.

Table D6: Response to Shocks: Size and Scope (Alternative Firm Definitions)

Employment, firm definition 1

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G× size 0.065*** 0.015
(0.020) (0.010)

∆G× scope 0.091*** 0.039**
(0.029) (0.016)

Observations 334,274 334,274 334,044 334,044
R-squared 0.048 0.018 0.028 0.136
Sector Y Y Y Y

Employment, firm definition 2

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G× size 0.039* 0.013
(0.023) (0.011)

∆G× scope 0.099*** 0.046**
(0.032) (0.018)

Observations 326,049 326,049 325,806 325,806
R-squared 0.045 0.015 0.029 0.134
Sector Y Y Y Y

Note: The table reports the results of estimating equation (25) using NETS data with alternative firm definitions. We
use alternative definitions of firm: (1) uses information on headquarters in 2015, (2) uses the time-varying definition
of headquarters. The dependent variable is the log change in revenue (Columns 1 and 3) or the log change in the
number of establishments (Columns 2 and 4) for firm i in sector j. All regressions include sector fixed effects and
robust standard errors.

34



Table D7: Response to Shocks: Size and Scope (No Sector FE)

(1) (2) (3) (4)
∆ size ∆ scope ∆ size ∆ scope

∆G 0.290*** 0.045* 0.290*** 0.045*
(0.098) (0.027) (0.098) (0.027)

∆G× size 0.045** 0.025***
(0.022) (0.009)

∆G× scope 0.118*** 0.058***
(0.042) (0.021)

Observations 321,114 321,114 321,114 321,114
R-squared 0.066 0.248 0.066 0.248
Sector N N N N

Note: The table shows the results of estimating equations 25 with the NETS data. The dependent variable in
columns (1) and (3) is the log change in the total size of firm i in sector j and in columns (2) and (4) is the log
change in the number of establishments of firm i in sector j. Specifications include robust standard errors.
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Figure D1: Response to Shocks: Size and Scope (Non-Parametric Specification)

(a) Impact on size (b) Impact on scope
by size distribution by size distribution
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(c) Impact on size (d) Impact on scope
by scope distribution by scope distribution
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Note: The figure shows the impact of shocks across different size/scope quartiles. We plot the estimated coefficients

β̂k from the following specification: ∆Yij = α+
∑
k βk (∆Gij × dk,ij) +

∑
k γk (dk,ij) + εij , where dk,ij are dummy

variables for four quantile groups: below the median, 50–90th percentile, 90–99th percentile, and top 1%. For
the scope regressions, we combine the first two groups into one dummy, since over 90% of firms operate only one
establishment. The dependent variable ∆Yij refers to changes in log size or log scope. Panel (a) shows the impact of
shocks across size quantiles, corresponding to the interpretation of βRR. Panels (b), (c), and (d) present analogous
results for βNR, βNR, and βNN , respectively. All estimates are based on establishment-level data and use the China
import penetration shock as the source of variation.
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E Scalability and Knowledge Diffusion: Alternative Mea-

sure of Scalabiltiy

Our diffusion strategy also suggests an alternative, forward-looking definition of scalability: namely,

by treating scalability as the internal diffusion of a characteristic within a firm. This allows us to

construct an ex-post measure that captures how widely a newly introduced characteristic is reused

by the originating firm. Formally, for a characteristic c introduced by firm i in module m at time

t, we define the alternative scalability index as:

S̃Icmitτ =
Num. of products with c introduced by firm i between t and t+ τ

Num. of products introduced by firm i between t and t+ τ

We then re-estimate our main regression using this alternative measure. Specifically, we estimate:

Dcmitτ = α + β S̃Iaimt−1τ + γ scopeimt + λamtτ + θaim + εaimtτ (45)

where, as before, the scalability measure S̃I s aggregated to the attribute level and lagged to

mitigate endogeneity concerns. We also control for the total number of products sold by firm i in

module m at t, along with a rich set of fixed effects. The results, presented in columns (3) and (4)

of Table E1, confirm that the strong positive relationship between scalability and diffusion is robust

to this alternative, forward-looking definition of scalability.

Table E1: Scalability and Knowledge Diffusion: Alternative Measure

(1) (2)
Diffusion

S̃I 0.1326*** 0.0282***
(0.000) (0.001)

scope -0.0013*** -0.0028***
(0.000) (0.001)

Observations 3,269,030 3,183,439
R-squared 0.812 0.913
Firm-Attribute-Module N Y
Attribute-Module-Time-Age Y Y

Note: The table shows the results of estimating equation 26. The dependent variable is Dcmitτ , which measures the
diffusion of characteristic c, introduced in module m by firm i between periods t and t+ τ . The independent variable
in both columns is the forward-looking scalability measure S̃Icmit−1τ , defined as the share of future products by
firm i that reuse characteristic c over the same window. All specifications control for the total number of products
sold by firm i in module m at time t.
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